Supplementary Information

Ultrathin-Nanosheet-based 3D Hierarchical Porous In₂S₃

Microspheres: Chemical Transformation Synthesis, Characterization, and Enhanced Photocatalytic and Photoelectrochemical Property

Rui Wu a,b , You Xu b , Rui Xu b , Yi Huang a,b and Bin Zhang *b

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.

b Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China. Fax&Tel: +86 022 2740347; E-mail: bzhang@tju.edu.cn

1. Materials

All reagents were used without further purification.

2. Experimental Section

2.1 Synthesis of InS-TETA

In a typical synthesis, tartaric acid (2 mmol, 0.3 g), $InCl_3$ (1 mmol, 0.2212 g) and L-cysteine (6 mmol, 0.7269 g) were added into a mixture solvent of deionized water (DIW) and TETA with a total volume of 18 mL (V_{DIW}/V_{TETA} =2:1) in a 50 mL Teflon-lined stainless-steel autoclave. After stirring to form a homogeneous solution, the system was treated at 160°C for 24 h and cooled down naturally. The white floccule formed after reaction was washed by DIW and absolute ethanol, respectively, and dried in a vacuum oven.

2.2 Synthesis of 3HPM In₂S₃

10 mg as-prepared InS-TETA was put into a solvent of 12 mL DIW in a 20 Teflon-lined stainless-steel autoclave under stirring to form a homogeneous solution. After kept at 180°C for 10 h, the yellow floccule formed after reaction was washed by DIW and absolute ethanol, respectively, and dried in a vacuum oven.

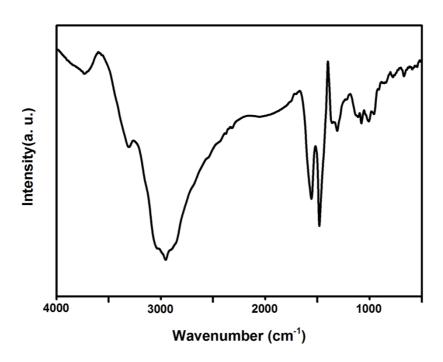
2.3 Synthesis of 3SM In₂S₃

3SM In₂S₃ was prepared using a modified procedure according to the synthesis of InS-TETA. In short, tartaric acid (2 mmol, 0.3 g), InCl₃ (1 mmol, 0.2212 g) and L-

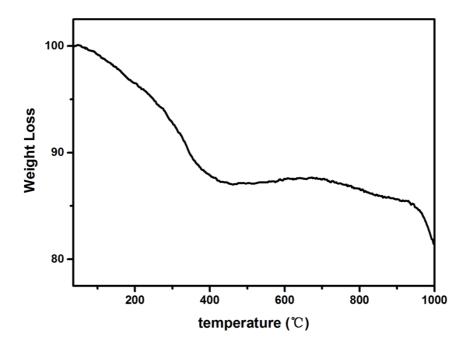
cysteine (6 mmol, 0.7269 g) were added into a single solvent of 18 mL DIW. The followed procedure was as mentioned before.

2.4 Characterizations

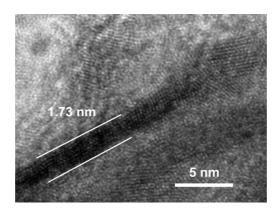
The scanning electron microscopy (SEM) images and Energy-dispersive X-ray spectroscopic (EDX) analysis were taken with a Hitachi S-4800 scanning electron microscope (SEM, 5 kV) equipped with the Thermo Scientific energy-dispersion Xray fluorescence analyzer. Transmission electron microscopy (TEM) and highermagnification transmission electron microscopy (HRTEM) were obtained with FEI Tecnai G²F20 system equipped with GIF 863 Tridiem (Gatan). Specimens for TEM and HRTEM measurements were prepared via dropcasting a droplet of ethanol suspension onto a copper grid, coated with a thin layer of amorphous porous carbon film, and allowed to dry in air. The X-ray diffraction patterns (XRD) of the products were recorded with Bruker D8 Focus Diffraction System using a Cu Kα source (λ= 0.154178 nm). The pore size distributions of the synthesized materials were determined by nitrogen physisorption using Quadrasorb SII Quantachrome Instrument. Pore size distributions were calculated using the Barrett-Joyner-Halenda method from the desorption branch. FTIR spectra were recorded on a MAGNA-IR 750 (Nicolet Instrument Co) FTIR spectrometer. UV-vis diffuse reflectance spectra (UV-vis DRS) were recorded on a Lambda 750 UV-vis-NIR spectrometer (Perkin-Elmer) equipped with an integrating sphere. The UV-vis DRS of solid samples were collected in 200-800 nm against BaSO₄ reflectance standard.

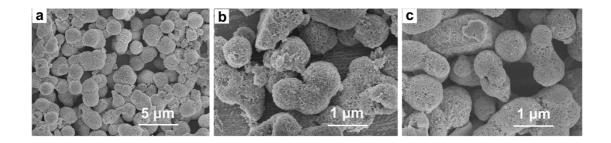

2.5 Photocatalytic Measurement

For both 3HPM In₂S₃ and comparison group, 15 mg sample was first immersed in the MO solution (15 mg/L) with a total volume of 100 mL and kept for a whole night to get absorption equilibrium. The system was irradiated directly under a 300W Xe lamp (Perfectlight) for 90 min at ambient atmosphere under UV-visible irradiation. After each 30 min intervals, 5 mL of MO solution was removed from the system for analysis. The degradation of MO was investigated by measuring its absorption spectra using UV-vis spectrophotometer.


2.5 Photoelectrochemical (PEC) Measurement

PEC measurements were carried out in a standard three-compartment cell consisting of a working electrode, a Pt gauze counter electrode, and a saturated calomel reference electrode (SCE) performed using an electrochemical workstation (CHI 660D, CH Instruments, Austin, TX) under UV-visible irradiation (the same with


that in photocatalytic measurement) in the presence of H_2SO_4 (0.5 M) as electrolyte and scarifying agent. An indium-tin oxide glass (ITO) decorated with catalyst samples were used as the working electrode. For a typical procedure for fabricating the working electrode, 4 mg of 3HPM In_2S_3 catalysts were dispersed in 4.384 mL of water containing Nafion solution (40 μ L, 5 wt%), then the mixture was ultrasonicated to generate a homogeneous ink. Then 160 μ L of the catalyst ink (containing 0.145 mg of catalyst) was spreaded on an ITO glass (loading amount: ~ 0.12 mg/cm²).


Figure S1. FTIR spectra of InS-TETA hybrid precursor, suggesting the existence of TETA in this hybrid.

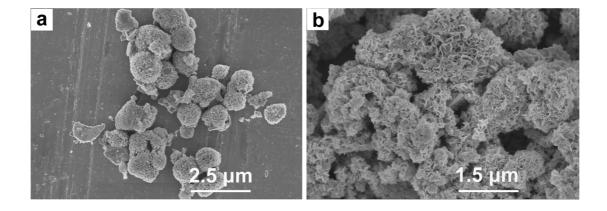

Figure S2. Thermogravimetric analysis curve of In₂S₃ prepared at 120°C, showing that as-prepared products still contain organic components.

Figure S3. Magnified TEM image of a vertical nanosheet in 3HPM In₂S₃, suggesting the thickness of a typical nanosheets to be 1.73 nm.

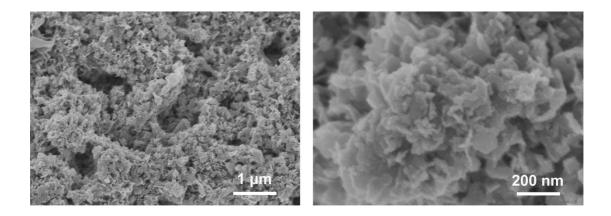


Figure S4. SEM images of In_2S_3 prepared at different temperatures: (a) 120 °C, (b) 150 °C and (c) 200 °C. It demonstrates that under different temperatures, nanosheet-like building block will not change, but the macro-morphology cannot be maintained.

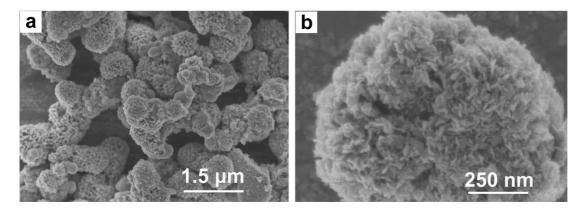
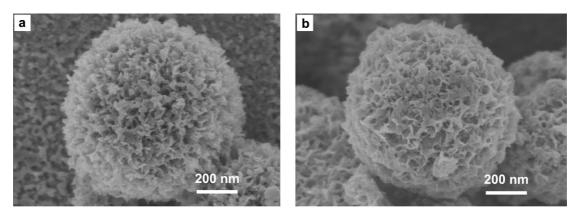
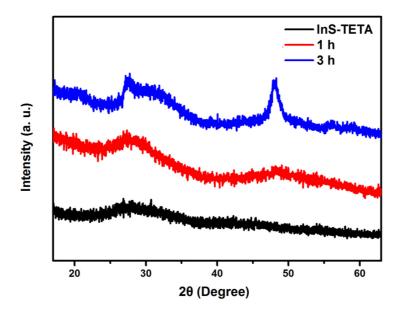
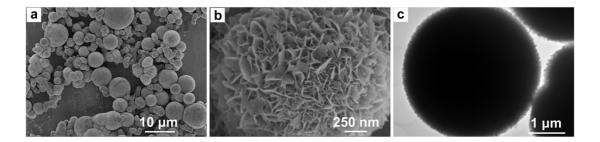


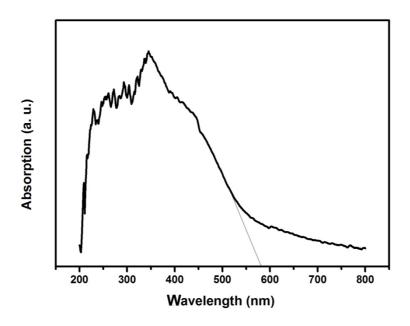
Figure S5. SEM images of In₂S₃ prepared using different amount of InS-TETA hybrid precursors: (a) 2 mg; (b) 30 mg, revealing that different concentrations of

starting materials will result in irregular macro-morphology with nanosheet-like building blocks unchanged.

Figure S6. SEM images of In_2S_3 prepared using TETA and DIW as solvent $(V_{TETA}/V_{DIW} = 1/3$ with total volume of 12 mL), confirming the importance of using single DIW as solvent for the maintaining of macro-sized morphology.

Figure S7. SEM images of In_2S_3 prepared using EG as solvent: (a) a general overview; (b) one typical microsphere, demonstrating that with EG as solvent, the building blocks change into nanorods.


Figure S8. SEM images of time-dependent intermedias: (a) at 1 h; (b) at 3 h.

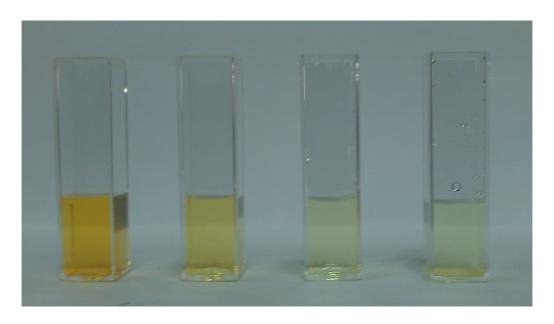

Figure S9. XRD patterns of inorganic-organic InS-TETA hybrid precursors and time-dependent intermediates at 1 h and 3 h. It's demonstrated that InS-TETA precursors are not well-crystalline, and with further reaction, peaks for inorganic In_2S_3 (PDF no. 00-32-0456) are becoming more and more obvious, suggesting the gradual formation of inorganic In_2S_3 . Thus, the successful transformation from inorganic-organic InS-TETA precursors into inorganic In_2S_3 has been confirmed.

Figure S10. SEM images (a, b) and TEM image (c) of 3SM In₂S₃, revealing the 3D solid structure for comparison group.

Figure S11. UV/Vis diffuse reflectance spetra of In_2S_3 microspheres, showing the band gap of 3HPM In_2S_3 to be about 2.14 eV as well as a strong absorption in ranging from visible to UV region.

Figure S12. Color change of degradation of MO using 3HPM In_2S_3 as catalyst. The color change during photodegradation of MO is evident.