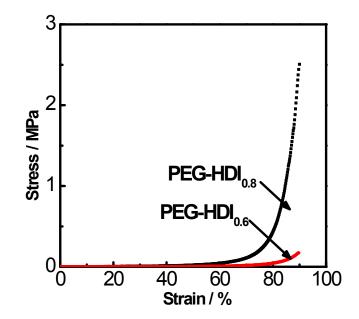
## **Supporting information**

## Facile Functionalization of Tetrahedron-like PEG Macromonomer-based Fluorescent Hydrogel with High Strength and Its Specific Metal Ions Detection

Haiyan Jia, Zhao Li, Xinling Wang and Zhen Zheng\*

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China; E-mail: zzheng@sjtu.edu.cn; Fax: +86 21 5474 1297; Tel: +86 21 5474 5817



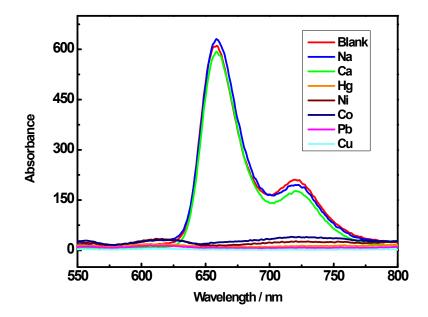



Figure S1. The stress-strain curves for  $PEG-HDI_{0.6}$  hydrogel and  $PEG-HDI_{0.8}$  hydrogel.



**Figure S2.** SEM images of (A) PEG-HDI<sub>0.6</sub> gel and (B) PEG-HDI<sub>0.8</sub> gel. Insert: ideal molecular model of respective hydrogel on the top right of the SEM images.



**Figure S3.** Fluorescence spectra of PEG-HDI<sub>1.2</sub>-TPP hydrogels in different metal ions aqueous solution (0.25 M). The wavelength of exciting light is 420 nm.



**Figure S4.** Photographs of PEG-HDI1.2-TPP hydrogels in Tris-HClO<sub>4</sub> buffer solution (left) and in Hg<sup>2+</sup> solution (10 mM, right), pH values of these solution are all 7.0, controlled by the Tris-HClO<sub>4</sub> buffer solution.