Electronic supplementary information

Preparation of titania based biocatalytic nanoparticles and membranes for CO₂ conversion

Jingwei Hou^a, Guangxi Dong^{a,b}, Bowen Xiao^a, Charly Malassigne^{a,c} and Vicki Chen^{a,b*}

^aUNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, Australia. Email: v.chen@unsw.edu.au; Tel: +61-2-93854813; Fax: +61-2-93855966

^bCooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), School of Chemical Engineering, The University of New South Wales, Sydney, Australia
^cPolytech Nantes, Université de Nantes, France

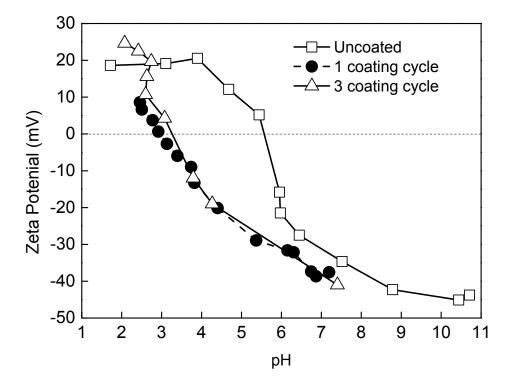


Figure S1. Membrane surface charge under different pH conditions (only 1 and 3 cycles coated membranes are presented as representatives)

Table S1. TiO_2 loading on polymer membrane after different coating cycles

Sample	TiO ₂ loading (wt %)
1 cycle coated PVDF	1.3 ± 0.2 %
2 cycle coated PVDF	3.0 ± 0.3 %
3 cycle coated PVDF	4.8 ± 0.4 %
4 cycle coated PVDF	6.2 ± 0.4 %