1 Supporting Information

- 2
- 3 Interconnected Three-Dimensional V₂O₅/Polypyrrole Network Nanostructures

```
4 for High Performance Solid-State Supercapacitors
```

- 5
- 6 Tao Qian, † Na Xu, † Jinqiu Zhou, Tingzhou Yang, Xuejun Liu, Xiaowei Shen, Jiaqi
- 7 Liang, and Chenglin Yan*

```
8
```


10 Fig. S1 Schematics of the fabrication process of V_2O_5/PPy core/shell network.

2 Fig. S2 CV curves of the prepared (A) stacked V_2O_5 , (B) V_2O_5 network, and (C) 3 V_2O_5 /PPy core/shell network electrode in the potential range of -0.2-0.8 V at scan 4 rates of 100, 50, 20, 10, 5 mV s⁻¹. (D) CV curves of three different materials at a scan 5 rate of 100 mV s⁻¹

2 Fig. S3 Nyquist plots of the V₂O₅/PPy in 5 M LiNO₃ aqueous solution and
3 LiNO₃/PVA gel electrolyte, respectively.

Fig. S4 Galvanostatic charge/discharge curves of the prepared V_2O_5 /PPy core/shell 7 network electrode with a mass loading of 1 mg cm⁻² at current densities of 0.5, 1, 2, 5, 8 10 A g⁻¹.

Fig. S5 Galvanostatic charge/discharge curves of the prepared V_2O_5/PPy core/shell 5 network electrode with 1 mg cm⁻² and 0.25 mg cm⁻².