Supporting Information for

Core-Shell Structured $\mathrm{Ce}_{2} \mathrm{~S}_{3} @ \mathrm{ZnO}$ and Their Potential as Pigment

Wen-Xin Mao ${ }^{[a, b]}$, Wei Zhang ${ }^{[b]}$, Zi-Xiang Chi ${ }^{[b]}$, Rong-Wen Lu ${ }^{[* a]}$, AnMin Cao ${ }^{[* b]}$, and Li-Jun Wan ${ }^{[* b]}$
E-mail address: lurw@dlut.edu.cn, anmin_cao@iccas.ac.cn, wanlijun@iccas.ac.cn
${ }^{a}$ State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
${ }^{b}$ Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.

Experimental Section

Chemicals

$\mathrm{Ce}_{2} \mathrm{~S}_{3}$ (Alfa Aesar), Zinc acetate ($\mathrm{ZnAc}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, Alfa Aesar), Hexamethylenetetramine (HMTA, Alfa Aesar), Ascorbic acid (AA, Alfa Aesar), ethanol (Alfa Aesar). All chemicals were used without further purification and all solutions were prepared using ultrapure water (resistance $>18 \mathrm{M} \Omega \mathrm{cm}^{-1}$).

Preparation $\mathrm{Ce}_{2} \mathrm{~S}_{3} @ \mathrm{ZnO}$ Core-Shell particles.

First, a calculated amount of $\mathrm{Zn}(\mathrm{Ac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and Ascorbic acid $\left(10 \mathrm{mM} \mathrm{Zn}(\mathrm{Ac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$ and 2 mM AA) was added to 50 ml water and this step is targeted to make Zn^{2+} interact with AA to form a $\mathrm{Zn}^{2+}-\mathrm{AA}$ complexion which plays a key role in the formation of $\mathrm{Ce}_{2} \mathrm{~S}_{3} @ \mathrm{ZnO} .{ }^{1}$ Because of the size of $\mathrm{Ce}_{2} \mathrm{~S}_{3}$ particles is large (average diameter is $1 \mu \mathrm{~m}$) and to make sure that every core particle can be coated with a uniform ZnO layer, $0.5-2.0$ molar ration of $\mathrm{Zn}^{2+} / \mathrm{Ce}_{2} \mathrm{~S}_{3}$ is effective to form well dispersed $\mathrm{Ce}_{2} \mathrm{~S}_{3} @ \mathrm{ZnO}$ particles. Finally, 20 mM HMTA was then added to cause ZnO formation. Because HMTA can hydrolyze in water to give $\mathrm{NH}_{3},{ }^{2,3}$ so that the basicity of the solution was
changing slowly, which can ensure the reacting environment suitable for controlled hydrolysis and this is critical in the synthesis process. After sealing and vortexing for 30 s , the reaction mixture was incubated at $90{ }^{\circ} \mathrm{C}$ for 3 h .

To isolate the $\mathrm{Ce}_{2} \mathrm{~S}_{3} @ \mathrm{ZnO}$ core-shell particles, the reaction mixture was centrifuged at 7500 rpm for 2 min , the supernatant was removed, and the concentrated particles were washed by water and ethanol 2 times each, then were collected at the bottom of the Eppendorf tubes.

Characterization

The morphology of the final products was observed y SEM (JEOL 6701F, operating at 10 kV). Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were collected on a JEM-2100F (JEOL) operated at 200 kV . X-ray diffraction (XRD) measurement was carried out using a Rigaku $\mathrm{D} / \mathrm{max} 2500$ diffractometer with filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation, and the data were collected from 10° to 80°. The compositional analysis is done with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The color performance was carried out by a Color-Eye 7000A. $\mathrm{H}_{2} \mathrm{~S}$ absorption measurement was performed by a NS- 4003 series gas-sensing measurement system. 5 g of each pigment powders was put into a 10 L sealed container. With temperature increasing, the volume of $\mathrm{H}_{2} \mathrm{~S}$ released by pigment was increasing and the sensitivity reflected the concentration of $\mathrm{H}_{2} \mathrm{~S}$. , $^{4} 5$

Figure. S1 TEM images of (a) $\mathrm{Ce}_{2} \mathrm{~S}_{3}$ and (b) HRTEM image of crystal lattice of $\mathrm{Ce}_{2} \mathrm{~S}_{3}$. (c) TEM image of $\mathrm{Ce}_{2} \mathrm{~S}_{3}$ with a uniform ZnO layer and (d) HRTEM image of ZnO layer with a huge number of small and randomly oriented nanocrystallines.

Figure. S2 SEM images of $\mathrm{Ce}_{2} \mathrm{~S}_{3}$ with 12 nm ZnO nanoshell

Figure. S3 Commercial sample of $\mathrm{Ce}_{2} \mathrm{~S}_{3}-\mathrm{ZnO}$

References

1. H. A. Tajmir-Riahi, J. Inorg. Biochem., 1991, 42, 47-55.
2. S. Xu and Z. L. Wang, Nano Res., 2011, 4, 1013-1098.
3. H. Sun, J. T. He, J. Y. Wang, S. Y. Zhang, C. C. Liu, T. Sritharan, S. Mhaisalkar, M. Y. Han, D. Wang and H. Y. Chen, J. Am. Chem. Soc., 2013, 135, 9099-9110.
4. L. Mei, J. Deng, X. Yin, M. Zhang, Q. Li, E. Zhang, Z. Xu, L. Chen and T. Wang, Sens. Actuators, B, 2012, 166-167, 7-11.
5.

E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, Appl. Phys. Lett., 2002, 81, 1869-1871.

