Supporting information

Monodisperse, ultrathin NiPt hollow nanospheres with tunable diameter and composition by a green chemical synthesis

Aixian Shan,^{a,b} Zhichao Chen,^b Bangquan Li,^a Chinping Chen^{b*} and Rongming Wang^{a,c*}

^a Department of Physics, BeiHang University, Beijing 100191, China;

^b Department of Physics, Peking University, Beijing 100871, China;

^c School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China;

* To whom correspondence should be addressed. E-mail: <u>cpchen@pku.edu.cn</u>; <u>rmwang@ustb.edu.cn</u>

Supplementary Figures

Figure S1: TEM pictures of the synthesized hollow spheres with the diameters ~ 100 , 65, 35 and 13 nm. The scale bars are 10 nm for (d) and 20 nm for (a), (b) and (c).

Figure S2: SEM images for the sacrificial template of Ni-B nanocompounds. The size decreases with the increasing reaction time. The scale bars are all of 100 nm.

Figure S3: Cyclic voltammograms for 35 nm NiPt hollow sphere, NiPt hollow sphere coated by PVP (Ref.[33]) and Pt/C in N₂-saturated 0.5 M H_2SO_4 at a scan rate of 50 mV s⁻¹.

Figure S4: TEM picture shows the white speckles in the synthesized 35 nm hollow NiPt nanosphere. It illuminates the porosity of the surface for the hollow nanospheres.

