Supporting information

Architecting smart "umbrella" Bi_2S_3/rGO -modified TiO₂ nanorods array structure in nanoscales for efficient photoelectrocatalysis under visible light

Xiaodeng Wang $^{\dagger abc}$, Jiale Xie $^{\dagger abc}$, and Chang Ming Li*abc

^a Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, P.R. China.

^b Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Electrical Power Sources,

Chongqing 400715, P.R. China.

^c Faculty of Materials and Energy, Southwest University, Chongqing 400715, P.R. China.

*Corresponding author: Chang Ming Li, Email: ecmli@swu.edu.cn.

[†] These authors contributed equally to this work.

1. Structure analysis with FESEM and TEM

Figure S1. $\rm TiO_2$ nanorod arrays (NRs) on FTO substrates.

Figure S2. Bi_2S_3 nanoparticles decorated TiO_2 NRs on FTO substrates.

Figure S3. Bi₂S₃/rGO multilayer modified TiO₂ NRs.

Figure S4. Bi₂S₃/rGO multilayer on TiO₂ nanoparticles thin film.

Figure S5. a. XRD pattern of TiO₂ NRs on FTO substrates. b. Typical EDS pattern of (Bi₂S₃/rGO)₅/TiO₂ NRs electrodes.

3. Effect of rGO modification on TiO_2 NRs on the photoelectrochemical performance

Figure S6. LSV plots of different amounts of rGO modified TiO_2 NRs in two-electrode system under full-solar-spectrum irradiation (>100 mW cm⁻²). (C is a short of spin coating cycle.)

4. Effect of Bi_2S_3 modification on $TiO_2\ NRs$ on the photoelectrochemical performance

Figure S7. Photoelectrochemical performances of different amount of Bi₂S₃ nanoparticles modified TiO₂ NRs in two-electrode system under full-solar-spectrum irradiation (>100 mW cm⁻²). (C is a short of SILAR cycle. Figure S7b: measured at bias of 0.0 V.) **5. Layer effect of Bi₂S₃/rGO on the photoelectrochemical performance**

Figure S8. Photoelectrochemical performances of different layers of Bi₂S₃/rGO modified TiO₂ NRs in three-electrode system under visible light. (Reference electrode: SCE, Counter electrode: Pt, Figure S8(c): measured at bias of 0.0 V vs. SCE.)
6. Calculated electronic parameters from EIS spectra.

or current of the parameters from 218 speers

Electrode	$R_s^{\ a}/\Omega$	CPE _{Dp} ^a (×10 ⁻⁶)	n _{Dp} ^a	$R_{Dp}{}^a/\Omega$	CPE _H (×10 ⁻ ⁶) ^a	n _H ^a	$R_{H}^{~a}/~\Omega$
TiO ₂ NRs	33.09 (2.1193)	6.58 (0.5312)	0.7894 (0.0080)	145.000 (7.5030)	107.27 (0.3818)	0.71462 (0.0077)	2924 (97.7870)
Bi ₂ S ₃ /TiO ₂	26.53	22.52	0.7912	9.973	238.63	0.85303	794.1
NRs	(0.0761)	(0.6710)	(0.0028)	(0.1089)	(0.8045)	(0.0008)	(3.1518)
(Bi ₂ S ₃ /rGO) ₅ /	20.14	29.81	0.9060	65.260	208.88	0.62823	1316.0
TiO ₂ NPs	(0.2965)	(1.3043)	(0.0052)	(4.1467)	(7.9597)	(0.0052)	(37.1350)
(Bi ₂ S ₃ /rGO) ₅ /	34.61	50.42	0.7990	6.261	507.02	0.79572	434.6
TiO ₂ NRs	(0.1470)	(3.7993)	(0.0093)	(0.2189)	(8.0235)	(0.0042)	(5.2670)

Table S1. Calculated electronic parameters from Nyquist plots.

^a Standard error from the fit of the EIS spectra.

7. Performance of related nanostructure electrodes in the literatures

Reference	Structure	Photocurrent (Bias)	Efficiency (%)	Illuminated light & intensity	Cell	Electrolyte
1	TiO ₂ nanotube array	0.9 mA/cm ² (1.23 V vs. RHE)	0.49	AM 1.5G, 100 mW/cm ²	3-electrode cell	1 М КОН
2	TiO ₂ nanorod array	18 uA/cm ² (1.0 V vs. Ag/AgCl)	0.10	AM 1.5G, 100 mW/cm ²	3-electrode cell	0.5 M NaClO ₄
3	Branched TiO ₂ nanorod	0.83 mA/cm ² (0.8 V vs. RHE)	0.49	AM 1.5G, 88 mW/cm ²	3-electrode cell	1 M KOH
4	GO/TiO ₂ nanotube array	~0.05 mA/cm ² (0.45 V vs. Ag/AgCl)	0.049	Visible light, 100 mW/cm ²	3-electrode cell	0.5 M Na ₂ SO ₄
5	rGO/TiO ₂ nanotube array	10.3 uA/cm ² (1.0 V vs. SCE)	-	Visible light, 2.7 mW/cm ²	3-electrode cell	0.1 M Na ₂ SO ₄
6	Bi ₂ S ₃ nanoparticle	1.0 mA/cm ² (0.23 V vs. Ag/AgCl)	-	AM 1.5G, 100 mW/cm ²	3-electrode cell	1.0 M Na ₂ SO ₃
6	Bi ₂ S ₃ nanotube	1.9 mA/cm ² (0.23 V vs. Ag/AgCl)	-	AM 1.5G, 100 mW/cm ²	3-electrode cell	1.0 M Na ₂ SO ₃
7	Bi ₂ S ₃ /CdS/TiO ₂ nanotube array	2.16 mA/cm ² (0.0 V vs. Ag/AgCl)	-	AM 1.5G, 100 mW/cm ²	3-electrode cell	0.25 M $\rm Na_2S$ and 0.35 M $\rm Na_2SO_3$
8	Bi ₂ S ₃ /TiO ₂ nanotube array	4.54 mA/cm ² (0.0 V vs. SCE)	1.86	AM 1.5G, 100 mW/cm ²	3-electrode cell	0.5 M Na ₂ S
9	Bi ₂ S ₃ /TiO ₂ nanocrystal	~0.42 mA/cm ² (0.0 V vs. Ag/AgCl)	-	AM 1.5G, 100 mW/cm ²	3-electrode cell	1.0 M Na ₂ S
10	CdS/TiO ₂ nanorod array	5.8 mA/cm ² (0.0 V vs. Ag/AgCl)	-	AM 1.5G, 100 mW/cm ²	3-electrode cell	0.25 M Na ₂ S and 0.35 M Na ₂ SO ₃
11	α -Fe ₂ O ₃ Nanorod/Graphene/BiV _{1-x} Mo _x O ₄	~1.97 mA/cm ² (1.0 V vs. Ag/AgCl)	~0.53	AM 1.5G, 100 mW/cm ²	3-electrode cell	0.01 M Na ₂ SO ₄
11	α -Fe ₂ O ₃ Nanorod/Graphene/BiV _{1-x} Mo _x O ₄	0.39 mA/cm ² (0.9 V vs. Ag/AgCl)	~0.17	Visible light, 64 mW/cm ²	3-electrode cell	0.01 M Na ₂ SO ₄
12	rGO/CdTe/TiO ₂ nanotube array	~1.09 mA/cm ² (0.0 V vs. SCE)	-	Xe lamp, 100 mW/cm ²	3-electrode cell	0.5 M Na ₂ SO ₄
13	CdS/rGO/TiO ₂ nanocomposit	~80 uA/cm ² (0.0 V vs. Ag/AgCl)	-	Visible light, 300 W Xe lamp	3-electrode cell	0.5 M Na ₂ SO ₄
14	CdS/Graphene/TiO ₂ nanotube array	~0.8 mA/cm ² (0.0 V vs. Ag/AgCl)	-	Xe lamp, 265 mW/cm ²	3-electrode cell	0.05 M Na ₂ S
This work	Bi ₂ S ₃ /rGO/TiO ₂ nanotube array	2.0 mA/cm ² (0.0 V vs. SCE)	1.2%	Visible light, 100 mW/cm ²	3-electrode cell	0.25 M Na ₂ S and 0.35 M Na ₂ SO ₃

Table S2. Summary of PEC performance and test conditions in the literatures.

Reference

- 1. Z. Zhang, M. F. Hossain and T. Takahashi, International Journal of Hydrogen Energy, 2010, 35, 8528-8535.
- 2. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. P. Zhao and J. Z. Zhang, Small, 2009, 5, 104-111.
- 3. I. S. Cho, Z. B. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. L. Zheng, Nano letters, 2011, 11, 4978-4984.
- 4. P. Song, X. Y. Zhang, M. X. Sun, X. L. Cui and Y. H. Lin, Nanoscale, 2012, 4, 1800-1804.
- 5. C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du and P. Yang, Physical Chemistry Chemical Physics, 2014, 16, 14800-14807.
- A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller and A. D. Hunter, *Chemstry of Materials*, 2010, 22, 5084-5092.
- P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao and D. Wu, *CrystEngComm*, 2013, 15, 7548.
- 8. F. G. Cai, F. Yang, Y. F. Jia, C. Ke, C. H. Cheng and Y. Zhao, Journal of Materials Science, 2013, 48, 6001-6007.
- 9. L. M. Peter, K. G. U. Wijayantha, D. J. Riley and J. P. Waggett, Journal Physical Chemistry B, 2003, 107, 8378-8381.
- 10. J. Luo, L. Ma, T. He, C. F. Ng, S. Wang, H. Sun and H. J. Fan, The Journal of Physical Chemistry C, 2012, 116, 11956-11963.
- 11. Y. Hou, F. Zuo, A. Dagg and P. Feng, Nano letters, 2012, 12, 6464-6473.
- 12. M. Liu, L. He, X. Liu, C. Liu and S. Luo, Journal of Materials Science, 2013, 49, 2263-2269.
- H. Yang, S. V. Kershaw, Y. Wang, X. Gong, S. Kalytchuk, A. L. Rogach and W. Y. Teoh, *The Journal of Physical Chemistry C*, 2013, 117, 20406-20414.
- 14. J. Xian, D. Li, J. Chen, X. Li, M. He, Y. Shao, L. Yu and J. Fang, ACS applied materials & interfaces, 2014, 6, 13157-13166.