Supporting Information of

Fabrication of Y_xBi_{1-x}VO₄ Solid Solutions for Efficient C₂H₄

Photodegradation

Peiqing Long, Yaohong Zhang, Xuxing Chen, and Zhiguo Yi*

Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

S1 Xe lamp spectrum

Fig. S1. The spectrum of the Xe lamp.

^{*} Email: zhiguo@fjirsm.ac.cn

Fig. S2 Room temperature XRD patterns of $Y_x Bi_{1-x} VO_4$ powders close to the monoclinic/tetragonal phase boundary. The arrows indicate (121) plane of the monoclinic phase.

S3 SEM images:

Fig. S3 SEM images of the as prepared samples: (a) $BiVO_4$, (b) $Y_{0.25}Bi_{0.75}VO_4$, (c-d) $Y_{0.85}Bi_{0.15}VO_4$, (e-f) YVO_4 .

S4-5 element mapping analysis

Fig. S4 The high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) image of $Y_{0.85}Bi_{0.15}VO_4$ (top panels) and elemental mapping patterns (bottom panels) for the boxed area.

Fig. S5 The high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) image of $Y_{0.25}Bi_{0.75}VO_4$ (top panels) and elemental mapping patterns (bottom panels) for the boxed area.

S6Tauc plots:

Fig. S6 Tauc plots of the $Y_x Bi_{1-x} VO_4$ photocatalysts.

Fig. S7 Mott-Schottky plots of the $Y_x Bi_{1-x} VO_4$ photocatalysts.

S8 C₂H₄ degradation kinetics:

Fig. S8 C₂H₄ photodegradation kinetics of different samples.

S9. Turnover number calculations:

Fig. S9 C_2H_4 photodegradation test upon $Y_{0.85}Bi_{0.15}VO_4$ powder under fixed-bed flow gas mode (catalyst: 0.15 g; reaction gas: a mixture of 5 mL C_2H_4 and 5mL O_2 with N_2 atmosphere). Note:

Reaction formula: $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$

The number of electrons gain and loss in the reaction: $12 \cdot e^{-1}$

The amount of substance 5 mL C₂H₄: n_1 =0.015/22.4 mol=2.2321×10⁻⁴ mol

The total amount of substance of electrons gain and loss in the photo-degradation of 5 mL C₂H₄:

$$n_2 = 12 \times 2.2321 \times 10^{-4} mol = 2.6786 \times 10^{-3} mol$$

For the $Y_{0.85}Bi_{0.15}VO_4$:

The amount of substance: $n_3=6.7568 \times 10^{-4}$ mol

The Turnover number: $\mathbf{n} = 2.6786 \times 10^{-3} / 6.7568 \times 10^{-4} = 3.9643$

S10: Flow mode degradation of C₂H₄:

Fig. S10 C_2H_4 photodegradation test upon $Y_{0.85}Bi_{0.15}VO_4$ powder under fixed-bed flow gas mode (catalyst: 0.8 g; reaction gas: a mixture of 200 ppm C_2H_4 and O_2 with N_2 carrier; Flow speed: 10 mL/min).

S11 Raman spectra of photocatalyst

Fig. S11 The Raman spectra of the $Y_{0.85}Bi_{0.15}VO_4$ samples before ($Y_{0.85}Bi_{0.15}VO_4$ -fresh) and after ($Y_{0.85}Bi_{0.15}VO_4$ -5 run) five cycles of C_2H_4 photo-degradation.

S12 Photocatalytic degradation of RhB

Y_rBi_{1-r}VO₄

Fig. S12 Composion of BET surfaces, band gaps and RhB photodegradation efficiencies of the $Y_xBi_{1-x}VO_4$ photocatalysts. The Photocatalytic degradation of rhodamine B (RhB) were carried out as follows: First, 0.1 g of the $Y_xBi_{1-x}VO_4$ powder was mixed with RhB (2 mL, with a concentration of 40 mg L⁻¹) in a 198 mL H₂O solution. Then, the suspension was magnetically stirred for 1 h to reach a complete adsorption-desorption equilibrium in the dark and subsequently exposed to the sunlight simulator irradiation with maximum illumination time up to 180 min. The excitation source is a 300 W xenon lamp located at ca. 12.2 cm away from the suspension surface. During the irradiation, the suspension was continuously stirred and the reaction system was kept in ice-bath. Before irradiation and at certain time intervals, about 7 mL suspensions were sampled and centrifuged for three times to remove the residual before characterization. The concentration of RhB was determined by measuring the absorbance in step time using the UV-vis-NR spectrophotometers (Lambda-900, PerkinElmer).