Electronic Supplementary Information

Approaching the top of the emissive properties of CH₃PbBr₃ perovskite nanoparticles

Soranyel Gonzalez-Carrero, Raquel E. Galian* and Julia Pérez-Prieto*

Electronic Supplementary Information

Figure S1: Absorption spectra of Pc and P_{OA1} in toluene. Emission spectra of Pc and P_{OA1} in toluene; and P_{OA1} film.	S2			
Table S1: Synthesis of P_{OA} perovskites in the presence and in the absence of ODE and OLA	63			
Table S2: Study of the influence of the alkyl-chain length of the longer ammonium salt on the emissive properties of the perovskites in the absence of OLA				
Figure S2: Absorption and emission spectra of P_{OA3} in toluene; emission recorded at λ_{exc} = 350 nm.	S4			
Figure S3: Absorption and emission spectra of P_{HXA} in toluene and HRTEM images.	S5			
Figure S4: XPS spectra of C_{1s} for P_{OA1} and P_{OA2}	S6			
Figure S5: XPS spectra of N_{1s} for P_{OA1} and P_{OA2}	S7			
Figure S6: XPS spectra of O_{1s} for P_{OA1} and P_{OA2}	S8			
Figure S7: XPS spectra of Pb_{4f} for P_{OA1} and P_{OA2}	S9			
Figure S8: XPS spectra of Br_{3d} for P_{OA1} and P_{OA2}	S10			
Figure S9: TGA heating curve and its 1 st derivative peaks of MABr, OABr, and lead bromide.	S11			
Figure S10: TGA heating curve and its 1 st derivative peaks of OLA and ODE.	S12			
Figure S11: TGA heating curve and its 1 st derivative peaks of MA and OA.	S13			
Figure S12: TGA heating curve of Ss1 and its 1 st derivative peaks	S14			
Figure S13: TGA heating curve of Ss2 and its 1 st derivative peaks				
Figure S14: ¹ H NMR (300 MHz) spectrum of P _{OA1} in deuterated DMSO	S15			
Figures S14-S18. ¹ H-NMR of the precursors	S16-S19			
Table S3. Quantification of the component molar ratio in POA1 by using TGA and ¹ H-RMN data				
Table S4. Quantification of the component molar ratio in POA2 by using TGA and ¹ H-RMN data				
Table S5 . Decay photoluminescence lifetimes (τ) of toluene solutions of P _{OA1} at different excitation wavelengths (λ_{exc})				
Table S6 . Decay photoluminescence lifetimes (τ) of toluene solutions of P_{OA2} at differentexcitation wavelengths (λ_{exc})				
Figure S18. Left: Room-temperature photoluminescence of P_{OA2} in toluene (λ_{em} = 521 nm) as a function of the illumination time. Right: fluorescence spectra of the sample (λ_{exc} = 350 nm; λ_{em} = 521 nm) before and after 75 minutes irradiation.	S22			

Figure S1: Absorption spectra of **Pc** (a) and **P**_{OA1} (b) in toluene. Emission spectra of **Pc** (c) and **P**_{OA1} in toluene (light green) (d); and **P**_{OA1} film (dark green) (d). Emission recorded at λ_{exc} = 350 nm. (d) HRTEM images (scale bar 20 nm) of **Pc** (e) and **P**_{OA1} (f).

Table S1: Synthesis of \mathbf{P}_{OA} perovskites in the presence and in the absence of ODE and OLA

Name	OABr (mmol)	MABr (mmol)	PbBr₂ (mmol)	ODE (mmol)	OLA (mmol)	Emission properties (λ, nm)	фғ
P _{OA1}	0.16	0.24	0.1	6.26	0.3	513	0.67
P _{OA2}	0.16	0.24	0.1	6.26	-	526	0.83
P _{OA3}	0.16	0.24	0.1	-	0.3	525	0.52

Table S2: Study of the influence of the alkyl-chain length of the longer ammonium salt on the emissive properties of the perovskites in the absence of OLA

Name	Ammonium salt	Ammonium salt (mmol)	MABr (mmol)	PbBr ₂ (mmol)	ODE (mmol)	Emission maximum (λ, nm)	фғ
P _{EA}	EABr	0.16	0.24	0.1	6.26	а	-
P _{HA}	HABr	0.16	0.24	0.1	6.26	526	0.58

^a An orange solid not dispersible in toluene was obtained.

Figure S2: Absorption (a) and emission (b) spectra of P_{OA3} in toluene; emission recorded at λ_{exc} = 350 nm. (c) and (d) HRTEM images at 50 and 5 nm scale, respectively. Nanoparticle size 5.92 ± 1.79 nm.

Figure S3: Absorption and emission spectra of P_{HA} (a, b) in toluene; emission recorded at λ_{exc} = 350 nm, and HRTEM images with a scale bar of 20 (c) and 5 nm (d). Size 5.92 ± 2.05 nm

Figure S4: XPS spectra of C1s for P_{OA1} (a) and P_{OA2} (b)

Figure S5: XPS spectra of N1s for P_{OA1} (a) and P_{OA2} (b)

а

Figure S6: XPS spectra of O1s for $\mathsf{P}_{\mathsf{OA1}}$ (a) and $\mathsf{P}_{\mathsf{OA2}}$ (b)

а

Figure S7: XPS spectra of Pb4f for $\mathsf{P}_{\mathsf{OA1}}$ (a) and $\mathsf{P}_{\mathsf{OA2}}$ (b)

b

Figure S8: XPS spectra of Br 3d for P_{OA1} (a) and P_{OA2} (b)

b

Figure S9: TGA heating curve of MABr and OABr (a, black and red, respectively) and of $PbBr_2$ (c); 1st derivative peaks of MABr and OABr (b, black and red, respectively) and of $PbBr_2$ (d).

Figure S10: TGA heating curve of OLA and ODE (a and c, in black and blue, respectively) and its 1st derivative peaks (b and d).

Figure S11: TGA heating curve of MA and OA (a and c, in black and blue, respectively) and its 1st derivative peaks (b and d).

Figure S12: TGA heating curve of Ss1 (a) and its 1st derivative peaks (b).

Figure S13: TGA heating curve of Ss2 (a) and its 1st derivative peaks (b).

Figure S14: ¹H NMR (300 MHz) spectrum of P_{OA1} in deuterated DMSO

Methylammonium bromide

Figure S15. ¹H NMR (300 MHz) spectrum of methylammonium bromide in deuterated DMSO.

¹H NMR (300 MHz, d-DMSO) δ 7.69 (s, 3H), 2.34 (s, 3H).

Octylammonium bromide

Figure S16. ¹H NMR (300 MHz) spectrum of octylammonium bromide in deuterated DMSO.

¹H NMR (300 MHz, d-DMSO) δ 7.63 (s, 3H), 2.75 (t, *J* = 7.5 Hz, 2H), 1.59 – 1.41 (m, 2H), 1.27 (s, 10H), 0.85 (t, *J* = 7.0 Hz, 3H).

Oleic acid

Figure S17. ¹H NMR (300 MHz) spectrum of oleic acid in deuterated DMSO.

¹H NMR (300 MHz, d-DMSO) δ 11.95 (s, 1H), 5.41 – 5.20 (m, 2H), 2.16 (t, *J* = 7.4 Hz, 2H), 2.06 – 1.86 (m, 4H), 1.55 – 1.38 (m, 2H), 1.23 (d, *J* = 2.3 Hz, 19H), 0.91 – 0.74 (m, 3H).

Octadecene

Figure S18. ¹H NMR (300 MHz) spectrum of 1-octadecene in deuterated DMSO.

¹H NMR (300 MHz, CDCl₃) δ 5.82 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.12 – 4.76 (m, 2H), 2.12 – 1.92 (m, 2H), 1.60 – 0.97 (m, 27H), 0.89 (t, J = 6.6 Hz, 3H).

		P _{OA1}		
Reagents	Reagents mmol	Component mmol	Component/PbBr ₂ * Molar ratio	
OABr	0.24	0.031	0.35	
MABr	0.16	0.122	1.39	
ODE	6.17	0.015	0.17	
OLA	0.29	0.003	0.03	
PbBr ₂	0.10	0.088	1.00	

Table S3. Quantification of the component molar ratio in \mathbf{P}_{OA1} by using TGA and $^1\text{H-}$ RMN data

*Moles of PbBr₂ calculated by TGA.

Table S4. Quantification of the component molar ratio in P_{OA2} by using TGA and ¹H-RMN data

		P _{OA2}		
Reagents	Reagents mmol	Component mmol	Component/PbBr ₂ * Molar ratio	
OABr	0.24	0.011	0.11	
MABr	0.16	0.131	1.37	
ODE	6.17	0.025	0.26	
PbBr ₂	0.10	0.088	1.00	

*Moles of PbBr₂ calculated by TGA.

Table S5. Decay photoluminescence lifetimes (τ) of toluene solutions of P_{OA1} at
different excitation wavelengths (λ_{exc})

λ_{exc}	τ _{av} (ns)	^τ ₁ (A ₁ %) (ns)	^τ ₂(Α₂%) (ns)	^τ ₃(A₃%) (ns)
340 nm	411.17	18.68 (54.62)	123.53 (34.52)	643.80 (10.86)
405 nm	415.92	13.22 (61.36)	115.20 (30.20)	661.60 (8.45)
470 nm	403.78	18.36 (61.11)	132.29 (29.87)	657.56 (9.02)

Table S6. Decay photoluminescence lifetimes (τ) of toluene solutions of P_{OA2} at different excitation wavelengths (λ_{exc})

λ _{exc}	τ _{av} (ns)	^τ ₁ (Α ₁ %) (ns)	^τ ₂ (A ₂ %) (ns)	^τ ₃(Α₃%) (ns)
340 nm	594.45	19.65 (57.99)	148.88 (32.31)	910.85 (9.71)
405 nm	611.43	15.08 (58.27)	138.03 (32.20)	913.33 (9.53)
470 nm	621.80	20.10 (55.93)	149.14 (33.55)	931.83 (10.53)

Figure S19. Left: Room-temperature photoluminescence of P_{OA2} in toluene (λ_{em} = 521 nm) as a function of the illumination time. Right: fluorescence spectra of the sample (λ_{exc} = 350 nm; λ_{em} = 521 nm) before and after 75 minutes irradiation.