Supporting Information

In situ synthesis of ordered mesoporous Co-doped TiO₂ and their enhanced photocatalytic activities and selectivities in reduction of CO₂

Tao Wang¹, Xianguang Meng^{1,2}, Guigao Liu^{1,2}, Kun Chang¹, Peng Li¹, Qing Kang¹,

Lequan Liu^{1,3,4}, Mu Li^{1,2}, Shuxin Ouyang^{3,4}, and Jinhua Ye^{1,2,3,4}*

¹International Center for Materials Nanoarchitectonics (WPI-MANA), and Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan

²Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, 060-0814, Japan

³TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, P.R. China

⁴Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China.

* To whom correspondence should be addressed: E-mail: Jinhua.YE@nims.go.jp

Additional experimental section:

1 Synthesis of reference samples

For purposes of comparison in the same reactor system, we synthesize or buy some typical semiconductors or composites, including Degussa P-25, N-doped TiO₂, Au/TiO₂, C₃N₄, WO₃). The performance and characteristics of these materials are shown in Fig. S8 and Table S2. Degussa P-25(TiO₂) was bought from Evonik-Degussa; ST-01(TiO₂) and WO₃ were bought from Wako pure chemical industries.

Synthesis of N-doped TiO₂: in a typical preparation, a certain amount of ST-01 was annealed in a tubular furnace at 550 $^{\circ}$ C for 2 h under NH₃ atmosphere. The sample was named as N-TiO₂.

Synthesis of Au/TiO₂: in a typical preparation, ordered mesoporous TiO₂ (OMT) powder was immersed into a certain amount of HAuCl₄ aqueous solution. Then, a small amount of ascorbic acid aqueous solution was added to reduce Au. The theoretical weight percentage of Au is about 7%. The sample was named as Au-OMT. Synthesis of bulk g-C₃N₄: in a typical preparation,^{R1} a certain amount of dicyandiamide was annealed in a tubular furnace at 550 °C for 4 h under air atmosphere.

2 Calculation of the quantum efficiency

On the basis of the assumption that a photon must be effectively absorbed, the photocatalytic quantum efficiency (QE) is typically defined as the ratio of the rate of photocatalytic events to the absorbed photons.^{R2,R3}

$$QE = \frac{N_{\text{photocat. events}}}{N_{\text{absorbed photons}}}$$

The photocatalytic events have to be summed over the (molar) amounts of all the products, $N_{photocat.events} = \sum_{i} n_i M_i$, Where n_i is the number of electrons required to obtain one molecule of product M_i .

Fig. S1 TG/DTA curves of F127 (a) recorded in N_2 and Co-OMT-1 (b) recorded in air

Fig. S2 (a) The photo of of Co_3O_4 before and after dissolving by HCl. (b) The photos of Co-doped TiO₂ dissolving by HCl to remove the Co_3O_4 .

	1	0 .		
Sample	Theoretical molar ratio (Co: Ti) ^[a]	Practical molar ratio (Co: Ti) ^[b]	Doping levels of Co ²⁺ (Co: Ti) ^[c]	
OMT	0	0	0	
Co-OMT-1	0.002	0.0023	0.0020	
Co-OMT-2	0.005	0.0049	0.0021	
Co-OMT-3	0.01	0.013	0.0040	
Co-OMT-4	0.025	0.026	0.0041	
Co-OMT-5	0.05	0.053	0.0049	
Co-OMT-6	0.1	0.12	0.0063	
Co-OMT-7	0.15	0.15	0.0064	
Co-OMT-8	0.2	0.25	0.0045	
Co ₃ O ₄	-	-	-	

Table S1 The molar ratio of samples before and after removing the Co₃O₄.

[a] The value is calculated according to the additive amount in the synthetic process.

[b] The value is calculated according to the EDX analysis before removing the Co₃O₄.

[c] The value is calculated according to the EDX analysis after removing the Co₃O₄.

Fig. S3 FE-SEM images of samples: (a) OMT, (b) Co-OMT-1, (c) Co-OMT-2, (d) Co-OMT-3, (e) Co-OMT-4, (f) Co-OMT-5, (g) Co-OMT-6, (h) Co-OMT-7, (i) Co-OMT-8.

Fig. S4 (a) FE-SEM and (b,c,d) TEM images of Co₃O₄.

Fig. S5 X-ray photoelectron spectroscopy of samples.

Fig. S6 The Tauc plots of samples.

Fig. S7 CH₄ evolution over Co-OMT-4, Co-OMT-7 and Co-OMT-8 under visible light.

Fig. S8 (a) Wide-angle XRD patterns, (b) UV-vis absorption spectra and (c) N_2 adsorption-desorption isotherms of samples.

The wide-angle XRD patterns of samples were shown in Fig. S8a. We can see that P25 presents a mixture of anatase and rutile; N-TiO₂ presents anatase; Au-OMT

presents a mixture of anatase and gold. The characteristic peaks of C_3N_4 are same as the previous reports.^{R1} UV-visible absorption spectra (Fig. S8b) show that all samples except P25, possess the optical absorption capability in the visible light region. The specific surface areas of P25, N-TiO₂, Au-OMT, C_3N_4 , WO₃ were 54.4, 53.6, 181.0, 5.2, 5.4 m² g⁻¹, respectively (calculated by the BET method from N₂ adsorption-desorption isotherms in Figure S8c).

Table S2 Summary of the various photocatalytic systems employed for CO_2 reduction.

Catalyst	Co-catalyst	Light source	Conditions	Major products	R _{max} ^[a]	Ref.
Co-OMT-4	-	Visible light: 300 W Xe	CO ₂ and H ₂ O vapor	CH	0.09	This
		lamp with a cut-off		CO	1 94	study
		filter (λ>420 nm)		0	1.74	study
		UV-Vis light: 300 W	$\rm CO_2$ and $\rm H_2O$	CH_4	0.33	This
		Xe lamp	vapor	CO	2.09	study
P25	-	Visible light: 300 W Xe	CO ₂ and H ₂ O vapor	None	0	This
		lamp with a cut-off				study
		filter (λ>420 nm)				study
N-TiO ₂	-	Visible light: 300 W Xe	CO ₂ and H ₂ O vapor	CH	0.015	This
		lamp with a cut-off			0.153	study
		filter (λ>420 nm)		60	0.155	study
Au-OMT	-	Visible light: 300 W Xe	CO ₂ and H ₂ O vapor	CH	0.018	This
		lamp with a cut-off		CO	0.056	study
		filter (λ>420 nm)			0.000	study
C ₃ N ₄	-	Visible light: 300 W Xe	CO ₂ and H ₂ O vapor	CH4	0.031	This
		lamp with a cut-off		CO	0.135	study
		filter (λ>420 nm)		00	0.155	study
WO ₃	-	Visible light: 300 W Xe	CO ₂ and H ₂ O vapor	CH4	0.005	This
		lamp with a cut-off		CO	0.017	study
		filter (λ >420 nm)				~
ZnAl ₂ O ₄ -modified		Visible light: 300 W Xe	CO ₂ and H ₂ O	CH ₄	0.0092	R4
mesoporous	0.5 wt% Pt	lamp with a cut-off	vapor			
ZnGaNO		filter (λ>420 nm)	inpor			
RGO–CdS nanorod composite	-	Visible light: 300 W Xe	CO_2 and H_2O	CH ₄	2.51	R5
		arc lamp with a				
		cut-offlter (λ >420 nm)	inpor			
P25	-	UV-Vis light: 300 W	CO ₂ and H ₂ O vapor	CH ₄	0.0027	R6
		Xe lamp				
Ordered	-	UV-Vis light: 300 W	$\rm CO_2$ and $\rm H_2O$	CH_4	0.19	R6

mesoporous TiO ₂		Xe lamp	vapor	СО	0.15	
Zn ₂ GeO ₄ nanobelt	1 wt % Pt and 1 wt % RuO ₂	UV-Vis light : 300 W Xe lamp	CO ₂ and H ₂ O vapor	CH ₄	0.025	R7
Anatase TiO ₂ rods with {010} facets	1 wt% Pt	UV-Vis light : 300 W Xe lamp	CO ₂ and H ₂ O vapor	CH ₄	0.0057	R8
Hollow anatase TiO ₂ single crystals with {101} facets	1 wt% RuO ₂	UV-Vis light: 300 W Xe lamp	CO ₂ and H ₂ O vapor	CH ₄	0.0017	R9
Leaf-architectured	1 wt % Au	UV-Vis light : 300 W	CO ₂ and H ₂ O	CH ₄	0.28	R10
NaTaO ₃	1 wt % Au	UV-Vis light: 200 W Hg-Xe arc lamp	CO ₂ and H ₂ O vapor	CH ₄ CO	0.036	R11
TiO ₂ nanorod	Ag	UV light: four 8 W UVA lamps with a wavelength of 365 nm	CO ₂ and H ₂ O vapor	CH ₄	2.64	R12
Brookite TiO ₂ nanorods	0.05 wt% Au	UV light : a light-emitting diode (Nichia, NCCU033), which emitted light at a wavelength of ca. 365 nm	5 mL of 0.2 mol L ⁻¹ KHCO ₃ aqueous solution saturated with CO ₂	СН₃ОН	0.11	R13
In-doped TiO ₂	-	UV-vis light : 500W mercury (Hg) flash lamp	CO ₂ and H ₂ O vapor, 0.20 bars reactor pressure, 373K reaction temperature	CH ₄ CO	243.75 81.25	R14
MgO/TiO ₂ nanotube film	Pt	UV-vis light : 300W high pressure Hg lamp	0.1 mol L ⁻¹ KHCO ₃ solution	CH ₄	100.22 ^[b]	R15

[a] Maximum formation rate reported for the major product(s), in μ mol g⁻¹h⁻¹.

[b] In ppm $h^{-1} cm^{-1}$.

Fig. S9 GC-MS spectra of the products of photocatalytic 13 CO₂ reduction over (a) Co-OMT-4 and (b) Co-OMT-7 after 12 h irradiation.

Fig. S10 Electronic structures of (a) anatase TiO_2 and (b) $Co_xTi_{1-x} O_2$ (x=0.0625).

Fig. S11 Valence band XPS spectra of samples. The values in Fig. are the relative difference between the Co-OMT-x and OMT.

Fig. S12 Mott-Schottky plots of samples: (a) OMT, (b) OMT, (c) Co-OMT-1, (d) Co-OMT-4, (e) Co-OMT-6, (f) Co-OMT-7.

References

- R1. X. C. Wang , K. Maeda , A. Thomas , K. Takanabe , G. Xin , J. M. Carlsson , K. Domen, M. Antonietti, *Nat. Mater.*, 2009, 8, 76–80.
- R2. S. E. Braslavsky, A. M. Braun, A. E. Cassano, A. V. Emeline, M. I. Litter, L. Palmisano, V. N. Parmon, N. Serpone, *Pure Appl. Chem.*, 2011, 83, 931–1014.
- R3. S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, *Angew. Chem. Int. Ed.*, 2013, **52**, 7372–7408.
- R4. S. Yan, H. Yu, N. Wang, Z. Li and Z. Zou, Chem. Commun., 2012, 48, 1048–1050.
- R5. J. Yu, J. Jin, B. Cheng and M. Jaroniec, J. Mater. Chem. A, 2014, 2, 3407-3416.
- R6. T. Wang, X. Meng, P. Li, S. Ouyang, K. Chang, G. Liu, Z. Mei and J. Ye, *Nano Energy*, 2014, 9, 50–60.
- R7. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. G. Zou, J. Am. Chem. Soc., 2010, 132, 14385–14387.
- R8. J. Pan, X. Wu, L. Wang, G. Liu, G. Q. Lu and H. M. Cheng, *Chem. Commun.*, 2011, 47, 8361–8363.
- R9. W. Jiao, L. Wang, G. Liu, G. Q. Lu and H. M. Cheng, ACS Catal., 2012, 2, 1854–1859.
- R10. H. Zhou, J. Guo, P. Li, T. X. Fan, D. Zhang and J. H. Ye, Sci. Rep., 2013, 3, 1667.
- R11. H. Zhou, P. Li, J. Guo, R. Yan, T. Fan, D. Zhang and J. Ye. *Nanoscales*, 2015, 7, 113–120.
- R12. D. Kong, J. Ziang Y. Tan, F. Yang, J. Zeng and X. Zhang, *Appl. Surf. Sci.*, 2013, 277, 105–110.

- R13. T. Ohno, T. Higo, N. Murakami, H. Saito, Q. Zhang, Y. Yang and T. Tsubot, *Appl. Catal. B*, 2014, **152–153**, 309–316.
- R14. M. Tahir, and N. S. Amin, Appl. Catal. B, 2015, 162, 98-109.
- R15. Q. Li, L. Zong, C. Li and J. Yang. Appl. Surf. Sci., 2014, 314, 458-463.