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Figure S1. Nitrogen sorption isotherm with pore size distribution (inset) and LiMn0.9Fe0.1PO4-
PAS.

The porous structure and the BET surface area of LiMn1-xFexPO4-PAS (x = 0 and 0.1) 

composite were investigated by N2 adsorption-desorption experiments at 77K (Figure S1). The 

BET surface area measured is 65.6 and 71.5 m2·g-1 for LiMnPO4-PAS and LiMn0.9Fe0.1PO4-PAS, 

respectively. The average pore diameter is 3.49 and 3.59 nm for LiMnPO4-PAS and 

LiMn0.9Fe0.1PO4-PAS, respectively, which is calculated using the Barrett-Joyner-Halenda (BJH) 

method. The high surface area and the small average pore will facilitate the diffusion of Li+ in the 

olivine-type LiMnPO4 class of materials. 
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Figure S2. TG curves of (a) LiMnPO4-PAS and (b) LiMn0.9Fe0.1PO4-PAS.
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Figure S3. LiMn0.9Fe0.1PO4-PAS samples recorded with a heating rate of 10℃·min-1 in an 

oxygen atmosphere with different amount of PAS: (a) 3 wt%, (b) 11 wt%, (c) 15 wt% and (d) 20 

wt%.

The PAS contents in LiMn0.9Fe0.1PO4-PAS powders were estimated by thermogravimetric 

(TG) measurement of the PAS coated LiMn0.9Fe0.1PO4 products in oxygen atmosphere (Figure 

S3). The weight loss below 200℃ is due to the evaporation of adsorbed moisture. It can be seen 
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that the maximum weight loss of the samples locates at 300-500℃, which is contributed to the 

PAS of the composite. By neglecting the tiny deviation, the PAS contents of LiMn0.9Fe0.1PO4-PAS 

powders were estimated 3 wt%, 5.6 wt%, 11 wt%, 15 wt% and 20 wt%, respectively.

Figure S4. SEM images of LiMn0.9Fe0.1PO4-PAS powders with different amount of PAS: (a) 3 
wt%, (b) 11 wt%, (c) 15 wt% and (d) 20 wt%.

The PAS content of LiMnPO4-PAS and LiMn0.9Fe0.1PO4-PAS was 5.5 wt% and 5.6 wt%, 

respectively (Figure S2). From Figure S3 and S4, it can be seen that the increasing PAS content 

made agglomeration exacerbated, which reduced the conductivity of the materials (Table S1). 

While the 3wt% PAS in the composite cannot supply the integrated conducting layer on the surface 

of nanoplates and the conductive network among the particles, resulting in the low conductivity of 
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the composite. Therefore, the LiMn0.9Fe0.1PO4-PAS composite with 5.6 wt% PAS exhibited the 

largest electrical conductivity.

Table S1. Conductivity of LiMn0.9Fe0.1PO4-PAS powders with different amount of PAS.

Samples 3 wt% 
(S·cm-1)

5.6 wt% 
(S·cm-1)

11 wt% 
(S·cm-1)

15 wt% 
(S·cm-1)

20 wt% 
(S·cm-1)

Conductivity 1.2×10-2 1.5×10-1 6.8×10-2 5.4×10-2 3.8×10-2
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Figure S5. The formation process of PAS. During the process, phenolic resin was dehydrated 
and dehydrocyclized as temperature increases and the final product was PAS.1
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Figure S6. Initial charge/discharge curves of LiMn0.9Fe0.1PO4-PAS with different .amount of 
PAS: (a) 3%, (b) 11%, (c) 15% and (d) 20%.
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Figure S7. Cycling stability of Li/LiMn0.9Fe0.1PO4-PAS cells with different amounts of PAS at 5 
C rate: (a) 3%, (b) 5.6%, (c) 11%, (d) 15% and (e) 20%. 
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To determine the optimal carbon content of the composites, the LiMn0.9Fe0.1PO4 cells with 

various amounts of PAS (3 wt% to 20 wt%) were prepared. Figure S6 shows the initial 

charge/discharge curves of the samples. The discharge capacities of the LiMn0.9Fe0.1PO4-PAS 

manifestly increase with increasing PAS content up to 11 wt%, which is 48 mAh·g-1 at 3 wt%, 

160.7 mAh·g-1 at 5.6 wt% and 157 mAh·g-1 at 11 wt% at 0.1 C. For the samples with 15 wt% PAS 

and 20 wt% PAS, the discharge capacities drop to 146 and 143.5 mAh·g-1, respectively. The 

decreased discharge capacity can be attributed to the growth in the charge-transfer resistance 

caused by the excessive presence of electrochemically inactive PAS and the agglomeration during 

pyrolysis (evident in Figure S4). 

Figure S7 illustrates cycling stability of Li/LiMn0.9Fe0.1PO4-PAS cells with different 

amounts of PAS at 5 C rate discharge. The highest specific capacity at the 5 C rate is obtained 

from the LiMn0.9Fe0.1PO4-PAS composite with 5.6 wt % of PAS. After 50 cycles, this composite 

retains 111 mAh·g-1, corresponding to 96.5% of its first discharge capacity, which is much higher 

than others. The electrochemical cycling data in Figure S6 are consistent with the microstructure 

and EIS results (Figure S8). From the Figure S8, we can see that the LiMn0.9Fe0.1PO4-PAS 

composite with 5.6 wt % PAS has the smallest Rct and the largest D, which is agree well with the 

electrochemical performance. The strong adhesion conducting PAS layer on the surface of 

LiMn0.9Fe0.1PO4 nanoplates and the well-distributed conducting wrinkled PAS nanoplates 

surrounding the LiMn0.9Fe0.1PO4 particles form a network of electrically conducting paths for 

electrons. Meanwhile, the smaller LiMn0.9Fe0.1PO4-PAS particles shorten the diffusion length for 

the Li+ ions. Therefore, the electrode with 5.6 wt% PAS is expected to deliver the best 

electrochemical performance.
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Figure S8. Nyquist plots of Li/ LiMn0.9Fe0.1PO4-PAS cells with different amounts of PAS (a); 
the relationship plot of Z′ vs. ω-1/2 at low-frequency region (b).

Table S2 The diffusion coefficient of the LMFP-PAS with different amounts of PAS.

Samples 3 wt% 5.6 wt% 11 wt% 15 wt% 20 wt%

D(cm2/s) 6.34×10-15 2.34×10-14 1.67×10-14 1.50×10-14 6.34×10-15
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