Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information

Simultaneous Formation of Silica-protected and N-doped TiO₂ Hollow Spheres using Organic-inorganic Silica Nanoparticles as Selfremovable Templates

Lei Li,^{ab} Shiqi Zhou,^a Erjian Chen,^b Ru Qiao,^a Yijun Zhong,^a Yong Zhang^a and Zhengquan Li*^{ab}

^{*a*}Institute of Physical Chemistry and ^{*b*}Department of Materials Physics, Zhejiang Normal Unniversity, Jinhua, Zhejiang 321004, P. R. China

Fig. S1 EDX analysis of the silica-protected TiO_2 HSs. The existence of element Ti, Si and O confirms that the nanocomposites consist of TiO_2 and SiO_2 . The Cu signal is from the copper grid.

Fig. S2 FTIR spectrum of the prepared TiO₂ HSs. The characteristic peak at 1100 cm⁻¹ and 953 cm⁻¹ are from Si-O and Si-O-Si bonds. The peaks at 400~700 cm⁻¹ are assigned to Ti-O stretching and Ti-O-Ti stretching modes. This date further confirms that the sample consists of SiO₂ and TiO₂.

Fig. S3 XPS analyses of the prepared sample after 900 °C calcinations: (A) N 1s; (B) O 1s; (C) Si 2p; (D) Ti 2p. The existence of element N shows that N has been doped in the sample. These data also confirm that the compositions of sample are N-doped TiO_2 and SiO_2 .

Fig. S4 TEM images of TSD-SiO₂ spheres prepared with different ratios of TSD/TEOS. (A) 1:16; (B) 1:8; (C) 1:4; (D) 1:2. Uniform TSD-SiO₂ spheres can be obtained with various TSD/TEOS ratio.

Fig. S5 Zeta potentials of different NPs: (A) pure SiO₂ NPs without TSD; (B) TSD-SiO₂ NPs; (C) SiO₂/TiO₂ HSs before calcinations. When TSD was added in the silica NPs, the TSD-SiO₂ NPs are positively charged. After the etching-deposition process, the formed SiO₂/TiO₂ HSs NPs is still positively charged, indicating that a few TSD molecules were maintained in the particles.

Fig. S5 TEM images of the samples prepared with different TSD-SiO₂ templates of various TSD/TEOS ratio: (A) 1:16; (B) 1:8; (C) 1:4; (D) 1:2. As the increase in TSD content, more and more hollow structures appear in final products. Complete hollow structures can be achieved at a ratio of 1:2 (TSD/SiO₂).

Fig. S6 TGA curves of the amorphous TiO_2 HSs prior to annealing. The first weight loss around 100 °C is due to the removal of adsorbed water (3.5 wt.%). The second weight loss at 100 °C~270 °C corresponds to degradation of organic species such as TSD doped in the sample (7.3 wt.%). The third weight loss at 270 °C~870 °C is attributed to further degradation of organic species and phase transformation of amorphous TiO₂ to anatase NCs (19.5 wt.%). The total weight loss of sample is 30.3 wt.%.

Fig. S7 Adsorption kinetics of RhB solution on the silica-protected TiO_2 HSs. The adsorption-desorption equilibrium reaches at about 16 h, suggesting that the prepared sample can continuously adsorbed small molecules in a prolonging manner due to their porous surface and hollow interior.

Fig. S8 UV-Vis diffuse reflectance spectra of the prepared TiO_2 HSs and commercial P25.