Supporting Information

Nanoporous hexagonal TiO₂ superstructure as a multifunctional material for energy conversion and storage

Eun Joo Lee,^{†,§} Inho Nam,^{‡,§} Jongheop Yi,^{‡,*} Jin Ho Bang^{†,§,*}

[†]Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 426-791, South Korea, [‡]WCU Program of Chemical Convergence for Energy & Environment, School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, South Korea, [§]Department of Chemistry and Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 426-791, South Korea.

^{\$}These authors contributed equally to this work.

KEYWORDS. Hexagonal TiO₂ superstructure, grain growth mechanism, nano-pores, dyesensitized solar cells, lithium ion batteries

Fig. S1 (a) SEM and (b and c) TEM images of HTO.

Fig. S2 (a) SEM and (b) TEM images of TiO_2 precursor prepared without oxalic acid (OA) and (c) SEM and (d) TEM images of TiO_2 precursor prepared without sodium dodecyl benzene sulfonate (SBDS).

Fig. S3 XRD pattern of (a) anatase/brookite TiO_2 obtained when HTO powder was directly transferred to a furnace held at 450 °C and annealed for 5 h and (b) anatase/rutile TiO_2 obtained when HTO powder was annealed at 900 °C for 5 h.

Fig. S4 (a and b) SEM and (c-e) TEM images of HTS obtained by calcining HTO, and (f) its selected-area electron diffraction (SAED) patterns.

Fig. S5 (a) SEM and (b) TEM images of TiO_2 obtained by calcining the TiO_2 precursor prepared without sodium dodecyl benzene sulfonate (SBDS), (c) XRD pattern of TiO_2 obtained by calcining the TiO_2 precursor prepared without sodium dodecyl benzene sulfonate (SBDS).

TiO ₂ films	J_{sc} (mA cm ⁻²)	$V_{oc}(V)$	FF	η (%)
NT/HTS	18.0	0.74	0.57	7.6
NT only	16.0	0.73	0.56	6.4
NT/DSL	16.7	0.73	0.56	6.8

Table S1. Solar Cell Parameters of DSSCs with Various TiO₂ Films.

					- /	•	-					-	(0.())	
meas	sure	me	nts.											
						• -			2				P	
Tab	le S	2.	Solar	Cell	Parameters	of	DSSCs	with	TiO ₂	Film	of NT/HTS	from	multiple	cell

NT/HTS	Jsc (mA/cm ²)	Voc (V)	FF	Eff (%)
Cell 1	18.0	0.737	0.570	7.58
Cell 2	18.2	0.741	0.555	7.48
Cell 3	17.6	0.737	0.575	7.44

Table S3. Solar Cell Parameters of DSSCs with TiO_2 Film of NT only from multiple cell measurements.

NT only	Jsc (mA/cm ²)	Voc (V)	FF	Eff (%)
Cell 1	16.0	0.732	0.558	6.44
Cell 2	16.1	0.722	0.570	6.61
Cell 3	15.9	0.707	0.565	6.33

Table S4. Solar Cell Parameters of DSSCs with TiO_2 Film of NT/DSL from multiple cell measurements.

NT/DSL	Jsc (mA/cm ²)	Voc (V)	FF	Eff (%)
Cell 1	16.7	0.725	0.562	6.81
Cell 2	16.5	0.725	0.567	6.79
Cell 3	16.3	0.731	0.584	6.94

Fig. S6 IPCE curves of DSSCs with different photoanodes from multiple measurements and photocurrent obtained by integration of IPCE spectra. Note that the integrated J_{sc} values from the IPCE measurements are lower than those from *J*-*V* curve measurement because of mismatch in area and shape between excitation beam (rectangle: 0.1 cm×0.7 cm) and active area of solar cells (circle with 0.5 cm in diameter). Thus, some of photons from the excitation did not reach the active area during IPCE measurements.

Fig. S7 (a) Electron lifetime and (b) electron transport time as a function of light intensity for DSSCs with different TiO_2 layers.

Fig. S8 Electron lifetimes of DSSCs with different TiO_2 layers obtained from photovoltage decay measurement.

Fig. S9 Specific capacities of anatase/brookite TiO₂ at various C rates.

Fig. S10 (a) Specific capacities of P25 anodes at 0.5 C during the first 100 galvanostatic cycles and (b) specific capacities of P25 cycled at various C-rates (0.5, 1, 2, 3, 5, and 0.5 C).

Fig. S11 SEM images of C-TiO₂ (anatase, Sigma-Aldrich).

Fig. S12 SEM images of (a) pelletized HTS and (b) pelletized conventional anatase TiO_2 spheres. Scale bar is 10 μ m.

Fig. S13 Differential capacities of (a) HTS and (b) C-TiO₂ anodes at various C-rates.

Active material	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	Qy of CPE _{pn} (mF)	$\begin{array}{c} A_{w} * \\ (m\Omega \ s^{-0.5}) \end{array}$
HTS	3.29	119.1	42.6	0.4
C-TiO ₂	4.19	246.4	0.9	28.7

 Table S5. Fitted Impedance Parameters of Nyquist Plots.

* $A_w = RT/(n^2 F^2 A 2^{1/2})(2/D^{1/2}C).$

where R is the gas constant, T is the temperature, n is the transferred electron number, A is the electrode area, D is the diffusion coefficient of Li⁺ in electrode and C is the concentration of Li⁺.