Controllable Synthesis of Cube-like ZnSnO₃@TiO₂ Nanostructures as Lithium Ion Batteries Anodes

Yu-ling Qin^{ac}, Fei-fei Zhang^{ac}, Xin-chuan Du^{ac}, Gang Huang^{ac}, Ya-cheng Liu^{ac}, Li-min Wang^{*ab}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China ^bChangzhou Institute of Energy Storage Materials & Devices, Changzhou 213000, Jiangsu, China

^cUniversity of the Chinese Academy of Sciences, Beijing 100049, China

Figure S1. SEM images of the ZnSn-based product prepared through thermal

treatment at (A) 150 °C, (B) 300 °C, (C) 450 °C, (D) 600 °C.

Figure S2. N_2 adsorption-desorption isotherms and (Inset) pore size distribution of

 $ZnSnO_3 @\,TiO_2 \ nanoparticles.$

Figure S3. XRD patterns of ZnSn(OH)₆ heated at different temperature.

Figure S4. Discharge-charge curves of $ZnSnO_3$ at a current density of 100 mA g⁻¹.

Figure S5. Coulombic efficiency and electrochemical cycling performance of the $ZnSnO_3@TiO_2$ at a current density of 200 mA g⁻¹.

Figure S6. EIS spectra of ZnSnO₃ and ZnSnO₃@TiO₂.

Figure S7. TEM image of de-lithiated ZnSnO₃@TiO₂ anode after 200 cycles.

Samples	$ZnSnO_3$ (at 100 mA g ⁻¹)	$ZnSnO_3@TiO_2$ (at 100 mA g ⁻¹)	$ZnSnO_3@TiO_2$ (at 200 mA g ⁻¹)
First discharge capacity / mAh g ⁻¹	1680.7	1590	1454
First charge capacity / mAh g ⁻¹	1106	1038	964
Discharge Capacity after 10 th cycle / mAh g ⁻¹	1008.5	950.7	918
Discharge Capacity after 100 th cycle / mAh g ⁻¹	384.7	732.6	625.7
Discharge Capacity after 200 th cycle / mAh g ⁻¹	<300	782.7	<600

Table S1. Comparison of the electrochemical properties of $ZnSnO_3$ and $ZnSnO_3@TiO_2$.