Supporting Information for:

Hybrid ionogel electrolytes for high temperature lithium batteries

Jin Hong Lee,^{a,b}[‡] Albert S. Lee,^a[‡] Jong-Chan Lee,^b Soon Man Hong,^{a,c} Seung Sang Hwang^{a,c} and Chong Min Koo^{*a,c}

^aCenter for Materials Architecturing, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seong-Buk Gu, Seoul 136-791

^bDepartment of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea

^cNanomaterials Science and Engineering, University of Science and Technology, 217 Gajungro, 176 Gajung-dong, Yuseong-Gu, Daejeon 305-333, Republic of Korea

‡These authors contributed equally to this work.

Fig S1. ¹H NMR of BMPTFSI in CDCl₃

Fig S2. Interfacial Resistance as a function of time

Fig S3. Cyclic Voltammogram for a symmetrical Li/HI-2/Li cell

Fig S4. Chemical structure of a well-studied organic crosslinker, ETPTA

Fig S5. Representative discharge profiles for reference LiFePO₄/1M LiTFSI BMPTFSI/Li Cells at 0.1C charge-0.1C discharge conditions (90°C)