Supporting information

A Robust Hydrogen Evolution Catalyst Based on Crystalline Nickel Phosphide Nanoflakes on Three-Dimensional Graphene/Nickel Foam: Ultrahigh Activity for Electrocatalytic Hydrogen Production from pH 0-14

Ali Han, Song Jin, Huanlin Chen, Hengxing Ji, Zijun Sun, Pingwu Du*

CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, and the Collaborative Innovation Center of Chemistry for Energy Materials (*i*ChEM), University of Science and Technology of China (USTC), Hefei, China 230026

*email: <u>dupingwu@ustc.edu.cn</u>

Experimental Methods

Materials. All chemicals, including nickel foam, red phosphorus, sulfuric acid (H₂SO₄), potassium dihydrogen phosphate (KH₂PO₄), dipotassium hydrogen phosphate (K₂HPO₄), and potassium hydroxide (KOH), were purchased from Aldrich or Acros and used without further purification. Potassium phosphate buffer (1.0 M KPi) were prepared by mixing appropriate dipotassium hydrogen phosphate trihydrate (K₂HPO₄), potassium dihydrogen phosphate (KH₂PO₄) and deionized water. 0.5 M H₂SO₄ solution was prepared by diluting the concentrated sulfuric acid. 1 M KOH solution was prepared by potassium hydroxide and deionized water and the final pH was ~14. All electrolyte solutions were prepared using millipore water (resistivity: ~18 M Ω ·cm).

Electrochemical methods.

The electrochemical tests were operated in a home-made three electrode electrochemical cell. All electrochemical experiments were performed at room temperature under air with a 660D CH Instrument potentiostat (purchased from Shanghai Chen Hua Instrument Co., Ltd.). An Ag/AgCl electrode (3 M KCl, the potential is 0.21 V vs. NHE) was used as the reference electrode, Pt wire as the counter electrode and graphene layers (G), G@NF, Ni₂P@G, and Ni₂P-G@NF as the working electrodes. 0.5 M H₂SO₄, 1.0 M KPi and 1 M KOH were used as electrolytes except as otherwise noted. There was several iR drop for compensation and no stirring were used for the polarization curve. Electrocatalysis for measuring Faraday efficiency was carried out with an overpotential of 277 mV by using a sealed electrochemical cell. The

reference electrode was placed a few millimeters from the working electrode surface. All potentials reported in this manuscript were converted to the RHE.¹

Synthesis of 3D Ni₂P networks

Commercial nickel foam $(1 \times 5 \text{ cm})$ was used as the template and the hybridizing graphene layers/nickel foam (G@NF) was fabricated *via* a simple heating method.² Subsequently, a certain amount of red phosphorus powder was evenly sprinkled on the surface of the G@NF. The G@NF was placed in a quartz tube, heated to 750 °C in flowing argon for 1 hour (10 °C/min), and then cooled down to room temperature to obtain the 3 D Ni₂P-G@NF electrode. 3D Ni₂P -G@NF electrode was directly used for the electrochemical activities in 0.5 M H₂SO₄, 1.0 M Pi and 1 M KOH solutions.

To prepare Ni₂P@G electrode without nickel substrate, the Ni₂P-G@NF electrode was put into a 10 mL HCl solution (6 M) and heated to 80 °C for 5 h to remove Ni. Finally, the as-obtained 3D Ni₂P@G was washed with deionized water until it is neutral. Then the G@NF electrode was used to study the electrocatalytic properties in 0.5 M H₂SO₄.

Characterization of 3D Ni₂P networks

Powder X-ray diffraction (XRD). The Ni₂P@G, NF, G@NF and Ni₂P-G@NF electrodes were examined by powder X-ray diffraction (XRD, D/max-TTR III) using graphite monochromatized Cu K α radiation ($\lambda = 1.54178$ Å), operating at 40 kV and 200 mA. The scanning rate was 5° min⁻¹ from 20° to 80° in 20.

X-ray Photoelectron Spectroscopy (XPS). The element valence states of the Ni₂P - G@NF was probed with the ESCALAB 250 X-ray photoelectron spectroscopy (XPS).

The survey scan and the high resolution spectra of Ni 2p and P 2p were shown in Figure S4. The spectra are referenced to C1s peak (285.0 eV).

Scanning Electron Microscopy (SEM) and energy dispersive X-ray spectroscopy

(EDX). The morphologies of the NF, G@NF, Ni₂P@G and the Ni₂P-G@NF electrodes were examined using a JSM-6700F field emission scanning electron microscope (FE-SEM). The materials were analyzed in several local spots to ensure their chemical homogeneity. The samples were rinsed with deionized water and acetonitrile, and dried in air. Then Au was coated on the surface to make the samples conducting before loading into the instrument. Images were obtained with an acceleration voltage of 5 kV.

Reference

- Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; Fontecave, M.; Artero, V. A Janus Cobalt-based Catalytic Material for Electro-Splitting of Water. *Nat. Mater.* 2012, 11, 802-807.
- Ji, H.; Zhang, L.; Pettes, M. T.; Li, H.; Chen, S.; Shi, L.; Piner, R.; Ruoff, R. S. Nano Lett. 2012, 12, 2446-2451.

Figure S1. The EDX spectra for the nickel foam (NF, a) and the graphene layers hybridizing nickel foam (G@NF, b).

Figure S2. X-ray diffraction patterns of the as-prepared 3D Ni₂P@G (black) and the PDF#74-1385 (red).

Figure S3. The high magnification SEM image of the Ni_2P nanoflakes.

Figure S4. The SEM images for the $Ni_2P@G$. The nickel substrate is removed in strong

acid.

Figure S5. The XPS spectra of (a) Ni 2p, (b) P $2p_{3/2}$, (c) C 1s and (d) the survey spectrum of the as-prepared 3D Ni₂P-G@NF electrode.

Figure S6. The theoretical (black dot) and experimentally observed (red dot) H_2 production as the function of time in 0.5 M H_2SO_4 solution with Ni₂P-G@NF as the cathode.

Figure S7. a) Polarization curves of Ni₂P@G electrode in 0.5 M H₂SO₄ (pH ~0) with a scan rate of 5 mV s⁻¹, along with graphene layers and a Pt electrode for comparison. The iR drop was corrected with ~2 Ω ; b) The Tafel plots for the Ni₂P@G electrode and the Pt electrode obtained from the polarization; c) Polarization data for the Ni₂P@G electrode in 0.5 M H₂SO₄ initially and after 300, 500 CV sweeps from 0.10 to -0.30 V vs. RHE; d) Time-dependent current density for Ni₂P@G electrode under an overpotential of 100 mV for 24 h.

Figure S8. The theoretical (black dot) and experimentally observed (red dot) H_2 production as the function of time in 0.5 M H_2SO_4 solution with $Ni_2P@G$ as the cathode.

Figure S9. The theoretical (black dot) and experimentally observed (red dot) H_2 production as the function of time in 1 M KPi solution with Ni₂P-G@NF as the cathode.

Figure S10. a) The charges during bulk electrolysis, which increased with time under an overpotential of 7 mV in 1.0 M KOH solution; b) The theoretical (black dot) and experimentally observed (red dot) H_2 production as the function of time in 1.0 M KOH solution with Ni₂P-G@NF as the cathode.

Figure S11. The theoretical (black dot) and experimentally observed (red dot) H_2 production as the function of time in 1 M KOH solution with Ni₂P-G@NF as the cathode.

Figure S12. Polarization curves of the Ni₂P-G@NF electrode in 1 M KOH (pH ~14) with a scan rate of 5 mV s⁻¹. Black plot- the G@NF electrode for comparison; red plot - in the presence of air, blue plot - in the presence of CO.

Figure S13. EDX spectrum of the as-prepared 3D $Ni_2P@G$ networks. The atomic ratio of the Ni and P was close to 2:1.

Figure S14. Polarization curves of Ni₂P-G@NF electrode in 1 M KOH (pH ~14) with a scan rate of 5 mV s⁻¹, along with the G@NF electrode and Pt electrode for comparison. Note: the area of the 3D Ni₂P-G@NF electrode and G@NF electrode was normalized to a flat area divided by 20.

catalyst	pН	Onset η (mV)	Tafel slope (mV/dec)	Current density (j, mA/cm ²)	η at the corresponding j (mV)	Faraday efficienc y	Ref
Ni ₂ P@G	0	50	38	10	105	~100%	This work
Ni ₂ P -G@NF	0	30	30	10	55	~100%	This work
CoP/CC	0	38	51	10	67	~100%	J. Am. Chem. Soc. 2014 , 136, 7587.
Pt	0	0	30	2	5	-	J. Am. Chem. Soc. 2013 , 135, 9267.
Ni ₂ P nanoparticles	0	-	46	10	116	~100%	J. Am. Chem. Soc. 2013 , 135, 9267.
FeP nanosheets	0	100	67	10	~240 -		Chem. Commun. 2013 , 49, 6656.
Fe-MoS ₃ film	0	-	39	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Co-MoS ₃ film	0	-	43	-		-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Ni-MoS ₃ film	0	-	42	-		-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Cu-MoS ₃ film	0	-	40	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Zn-MoS ₃ film	0	-	39	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
MetallicMoS 2 nanosheets	0	200	54	10	195	-	J. Am. Chem. Soc. 2013 , 135, 10274.
MoS ₂ particles	0	100	54	2	190	-	<i>Energy Environ. Sci.</i> 2012 , <i>5</i> , 6136.
MoS ₃ film	0	-	39	-	-	-	<i>Chem. Sci.</i> 2011 , <i>2</i> , 1262.
Nanoporous Mo ₂ C nanowire	0	70	53	60	200	-	Energy Environ. Sci. 2014, 7, 387.
Bulk Mo ₂ C	0	-	87.6	10	240		<i>Energy Environ. Sci.</i> 2013 , <i>6</i> , 943.
Double- gyroid MoS ₂ /FTO	0	150-200	50	2	190		Nat. Mater. 2012, 11, 963.

Table S1. Comparison of various solid-state HER catalysts in acid solutions.

CoSe ₂ NP/CP	0	-	42.1	10	139	-	J. Am. Chem. Soc.
00002111701	U		12.1	10	157		2014 , <i>136</i> , 4897.
CoSo							Angew. Chem. Int.
	0	50	48	-	-	-	<i>Ed.</i> 2013 , <i>52</i> ,
nanobelts							8546.
Defect-rich	0	100	50	10	200		Adv. Mater. 2013,
MoS_2	0	120	50	13	200	-	25, 5807.
MoO ₃ -	0	150 000	7 0 (0	10	210		Nano Lett. 2011, 11,
MoS ₂ /FTO	0	150-200	50-60	10	310		4168.
\overline{WS}_2	0	00.400	60				<i>Nat. Mater.</i> 2013,
nanosheets	0	80-100	60	-	-	-	12, 850.
							Angew. Chem. Int.
WS ₂ /rGO	0	150-200	58	23	300		Ed. 2013, 52,
_							13751.
							Angew. Chem. Int.
MoN/C	1	157	54.5	2	290	-	Ed. 2012, 51,
							6131.
							Angew. Chem. Int.
NiMoN _X /C	1	78	35.9	2	170	-	Ed. 2012, 51,
							6131.
							Angew. Chem. Int.
Pt/C	1	0	30	2	60	-	Ed. 2012, 51,
							6131.

catalyst	рН	Onset η (mV)	Tafel slope (mV/dec)	Current density (j, mA/cm ²)	η at the correspondi ng į (mV)	Faraday efficiency	Refs.
Ni ₂ P -G@NF	7	~15	40	2	40	~100%	This work
CoP/CC	7	45	93	2	65	~100%	J. Am. Chem. Soc. 2014, 136, 7587.
H ₂ -CoCat film	7	50	140	2	385	-	Nat. Mater. 2012, 11, 802.
CoS/FTO	7	43	93	2	83	~100%	J. Am. Chem. Soc. 2013 , 135, 17699.
Fe-MoS ₃ film	7	-	95	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Co-MoS ₃ film	7	-	87	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Ni-MoS ₃ film	7	-	96	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Cu-MoS ₄ crystals	7	160	95	2	210	~100%	Energy Environ. Sci. 2012 , 5, 8912.
MoS ₃ film	7		86	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Co-NRCNTs	7			2	380	-	Angew. Chem. Int. Ed. 2014 , <i>53</i> , 4372.
Mo ₂ C	7	-	-	1	200	-	Angew. Chem. Int. Ed. 2012 , 51, 12703.
Mo ₂ B	7	-	-	1	250	-	Angew. Chem. Int. Ed. 2012 , 51, 12703.

Table S2. Comparison of various solid-state HER catalysts in neutral solutions.

catalyst	рН	Onset η(m V)	Tafel slope (mV/dec)	Current density (j, mA/cm ²)	η at the correspo nding j (mV)	Faraday efficiency	Ref
Ni ₂ P - G@NF	14	~7	30	10	50	~100%	This work
CoP/CC	14	80	129	10	209	~100%	J. Am. Chem. Soc. 2014 , 136, 7587.
Ni-Co sulphide	14	-	81	-	-	-	Int. J. Hydrogen Energy 1991 , 16, 1.
CoS/FTO	14	100	-	1	480	-	J. Am. Chem. Soc. 2013 , 135, 17699.
MoB	14	140	59	-	-	-	<i>Chem. Sci.</i> 2012 , <i>3</i> , 2515.
Ni	14	-	-	10	400	-	Angew. Chem. Int. Ed. 2012 , 51, 12703.
Ni wire	14	~190	96	10	350	-	ACS Catal. 2013 , <i>3</i> , 166.
Co- NRCNTs	14	50- 100	-	10	370	~100%	Angew. Chem. Int. Ed. 2012 , 51, 12703.

Table S3. Comparison of various solid-state HER catalysts in basic solutions.