Uniform Pd-Pt alloy nanoparticales supported on graphite

nanoplatelets with high electrocatalytic activity toward

methanol oxidation

Genlei Zhang^a, Chengde Huang^b, Ruijie Qin^a, Zechao Shao^a, De An^a, Wen Zhang^a, Yuxin Wang^a, *

^a School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Co-Innovation Center of Chemical Science & Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Weijin Road, Tianjin 300072, PR China

^b School of Chemical Engineering and Technology, Department of Applied Chemistry, Tianjin University, Weijin Road, Tianjin 300072, PR China

* Corresponding author. Tel./fax: +86 22 27890515.

E-mail address: yxwang@tju.edu.cn (Y. Wang)

Figure S1 TEM images of Pt (A), Pd_1Pt_3 (B), Pd_1Pt_1 (C), Pd_3Pt_1 (D) and Pd (E) on bare GNPs, respectively.

Figure S2 Sizes distributions of the nanoparticles in (A) Pt/GNPs, (B) Pd₁Pt₃/GNPs, (C) Pd₁Pt₁/GNPs, (D) Pd₃Pt₁/GNPs, (E) Pd/GNPs and (F) particle sizes of the Pd, Pt, and Pd-Pt bimetallic NPs with different mole fraction of Pd in feeding solution.

From Figure S2, it can be seen that the average size of the metal nanoparticles in Pt/GNPs, Pd₁Pt₃/GNPs, Pd₁Pt₁/GNPs, Pd₃Pt₁/GNPs and Pd/GNPs catalysts as estimated from the histograms is 4.8 ± 1.0 nm, 3.9 ± 0.56 nm, 7.4 ± 1.8 nm, 8.8 ± 2.1 nm and 9.6 ± 2.8 nm, respectively. More than 150 nanoparticles were counted in obtaining the results, as commonly practiced by others [1].

Figure S3 EDX spectrum of $Pd_1Pt_3/GNPs$ and the inset table shows element contents based on EDX measurement.

Figure S4 (A) Cyclic voltammograms (CVs) of Pt/GNPs, Pd₁Pt₅/GNPs, Pd₁Pt₃/GNPs, Pd₁Pt₁/GNPs, Pd₃Pt₁/GNPs, Pd₅Pt₁/GNPs, and Pd₁₀Pt₁/GNPs catalysts in 0.5 M $H_2SO_4 + 1.0$ M methanol at a scan rate of 20 mV s⁻¹.

Figure S5 (A) CVs of GNPs, Pt/GNPs and Pd/GNPs catalysts in 0.5 M H_2SO_4 + 1.0 M methanol at a scan rate of 20 mV s⁻¹; (B) The same CVs of GNPs and Pd/GNPs as in (A), but shown with enlarged vertical axis.

Figure S6 Cyclic voltammograms (CVs) curves of catalysts of different Pd to Pt ratios in 0.5 M H_2SO_4 solution at a scan rate of 50 mV s⁻¹.

	Metal Ratio	Metal Loading (%)		
Catalysts	(Pd/Pt)	Pd	Pt	Total Metal
Pd/GNPs	1:0	17.81		17.81
Pd ₁₀ Pt ₁ /GNPs	10:1.31	14.22	3.43	17.65
Pd ₅ Pt ₁ /GNPs	5:1.22	12.64	5.68	18.32
Pd ₃ Pt ₁ /GNPs	3:1.13	11.12	7.7	18.82
Pd ₁ Pt ₁ /GNPs	1:0.95	6.80	11.89	18.69
Pd ₁ Pt ₃ /GNPs	1 : 2.92	3.04	16.32	19.36
Pd ₁ Pt ₅ /GNPs	1 :4.89	1.91	17.2	19.11
Pt/GNPs	0:1		19.02	19.02

Table S1 Summary of the composition and loading date for the catalysts on the basisof ICP-OES analysis.

	Peak	(f)	Peak (b)
PdCl ₄ ²⁻ /PtCl ₆ ²⁻	İ _{f, pe}	ak	$i_{b, peak}$
(mol/mol)	(mA mg ⁻¹ _{metal})	(mA mg ⁻¹ Pt)	(mA mg ⁻¹ metal)
0:1	216.99	216.99	167.39
1:5	206.63	231.07	155.91
1:3	385.22	460.24	283.83
1:1	218.19	339.75	159.41
3:1	122.81	323.09	77.45
5:1	62.84	233.64	39.05
10:1	34.64	215.63	18.92

Table S2 Electrochemical parameters obtained from Figure 6.

References

[1] L. Zhao, X. Ji, X. Sun, J. Li, W. Yang, X. Peng, J. Phy. Chem. C, 113 (2009) 16645-16651.