Electronic Supplementary Information

Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction

Chan Wang,^{*a,b,c*} Miao Yang,^{*a,b*} Peng Tian,^{*a,b*} Shutao Xu,^{*a,b*} Yue Yang,^{*a,b*} Dehua Wang,^{*a,b,c*} Yangyang Yuan,^{*a,b,c*} and Zhongmin Liu*^{*a,b*}

 ^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.
^b National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
^c University of Chinese Academy of Sciences, Beijing, P. R. China
* E-mail: liuzm@dicp.ac.cn

Submitted to Journal of Materials Chemistry A

Synthesis of conventional SAPO-34

Pseudoboehmite, water, phosphoric acid, silica sol, and DEA were mixed in sequence with a gel composition of 2.0 DEA:1.0 Al₂O₃:1.0 P_2O_5 :0.55 SiO₂:50 H₂O. The crystallization was conducted in a stainless steel autoclave at 200 °C for 24 h under rotation. The product was filtrated, washed thoroughly and dried in air. The composition of the product is Al_{0.480}P_{0.362}Si_{0.158}O₂. The XRD pattern and SEM image are shown in Fig. S1 and S2.

Fig. S1 XRD pattern of as-synthesized conventional SAPO-34.

Fig. S2 SEM image of as-synthesized conventional SAPO-34.

Fig. S3 XRD patterns of samples synthesized with TPOAC/TEOS of 1/3 at different crystallization time.

Fig. S4 SEM images of samples synthesized with TPOAC/TEOS of 1/3 at different crystallization times: 12 h (a), 24 h (b), 48 h (c), and 72 h (d).

Fig. S5 XRD patterns and SEM images of synthesized samples without (a) and with (b) TPOAC crystallized for 24h.

Fig. S6 IR spectra of NH_3 adsorbed on conventional SAPO-34 (a), sample 6 (b), sample 7 (c) and sample 8 (d) at varied temperatures.

Fig. S7 IR spectra of pyridine adsorbed on conventional SAPO-34 (a), sample 6 (b), sample 7 (c) and sample 8 (d) at varied temperatures.

The bands at 1545 and 1455 cm⁻¹ can be assigned to pyridine adsorbed on Brönsted and Lewis acid sites, respectively¹. Comparing the spectra of the four samples at 100 °C and 300 °C, it is concluded that the strength of acid sites on the external surface of sample 7 and 8 is larger than conventional SAPO-34 and sample 6.

1. R. B. Borade and A. Clearfield, J. Mol. Catal., 1994, 88, 249-266.

Fig. S8 ¹H NMR spectrum of calcined sample 7 and conventional SAPO-34.

Fig. S9 C_3H_8/C_3H_6 variation with time-on-stream over sample 6, 7, 8 and conventional SAPO-34.