Supporting Information

For Journal of Materials Chemistry A

## Investigation on Regeneration Kinetics at Perovskite/Oxide Interface with Scanning Electrochemical Microscopy

Getachew Alemu,<sup>a</sup> Junpeng Li, <sup>a,b</sup> Jin Cui, <sup>a</sup> Xiaobao Xu, <sup>a</sup> Bingyan Zhang, <sup>a</sup> Kun Cao, <sup>a</sup> Yan Shen, <sup>a</sup> Yibing Cheng, <sup>c</sup> Mingkui Wang <sup>a,\*</sup>

<sup>a</sup> Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for

Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of

Science and Technology, Wuhan 430074, P. R. China.

<sup>b</sup> State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, P. R. China.

<sup>c</sup> Department of Materials Engineering, Monash University, Melbourne, Victoria, 3800, Australia

\*Corresponding author, E-mail: mingkui.wang@mail.hust.edu.cn

In this study, we report a comparative investigation of charge transfer kinetics with electrochemical microscopy (SECM) measurement between MAPbI<sub>3</sub> and conventional sensitizers. The electrolyte used for the investigation of reduction process is 1-methy-1H-tetrazole-5-thiolate ( $T^-$ ) for P1/NiO and MAPbI<sub>3</sub>/NiO. Disulfide dimmer ( $T_2$ ) is used as for Z907/TiO<sub>2</sub> and MAPbI<sub>3</sub>/TiO<sub>2</sub> films.

The experimental approach curves  $i_T(z)$  were normalized to  $I_T(L)$  and the normalized heterogeneous rate constants have been extracted by fitting them to an analytical approximation suggested by Cornut and Lefrou for a first-order reaction at the sample and infinitely fast reaction at the UME (equation S1).<sup>1-4</sup>

1

$$I_T(L,k,RG) = I_T^{con} \left( L + \frac{1}{k}, RG \right) + \frac{I_T^{ins}(L,RG) - 1}{\left( 1 + 2.47RG^{0.31}LK \right) \left( 1 + L^{0.006RG + 0.133}k^{-0.0236RG + 0.91} \right)}$$
(S1a)

$$I_T^{ins}(L, RG) = \frac{(2.08/RG^{0.358})(L - (0.145/RG)) + 1.585}{(2.08/RG^{0.358})(L + 0.0023RG) + 1.57 + (\ln RG/L) + (2/\pi RG)\ln(1 + (\pi RG/2L)))}$$
(S1b)

$$I_T^{cond}\left(L+k^{-1}, RG\right) = \alpha(RG) + \frac{\pi}{4\beta(RG)\arctan\left(L+k^{-1}\right)} + \left(1-\alpha(RG)-\frac{1}{2\beta(RG)}\right)\frac{2}{\pi}\arctan\left(L+k^{-1}\right) \quad (S1c)$$

$$\alpha(RG) = \ln 2 + \ln 2 \left(1 - \frac{2}{\pi} \arccos\left(\frac{1}{RG}\right)\right) - \ln 2 \left(1 - \left(\frac{2}{\pi} \arccos\left(\frac{1}{RG}\right)\right)^2\right)$$
(S1d)

$$\beta(RG) = 1 + 0.639 \left( 1 - \frac{2}{\pi} \arccos\left(\frac{1}{RG}\right) \right) - 0.186 \left( 1 - \left(\frac{2}{\pi} \arccos\left(\frac{1}{RG}\right)\right)^2 \right)$$
(S1e)

where  $I^{\text{ins}}_{T}(L, \text{RG})$  is the contribution of diffusion of T<sup>-</sup> for the NiO electrode and diffusion of T<sub>2</sub> for the TiO<sub>2</sub> electrode from solution to the UME.  $I^{\text{cond}}_{T}(L+k^{-1},RG)$  is the current that results from the reaction of  $2s^{+}+2T^{-}\rightarrow 2s+T_{2}$  for the sensitized n-type semiconductor oxide,  $2s^{-}+T_{2}\rightarrow 2s+2T^{-}$  for the sensitized p-type semiconductor sample.  $\alpha(\text{RG})$  and  $\beta(\text{RG})$  are the constants.





**Figure S1**. Basic arrangements for the SECM investigation of heterogeneous reaction at a) P1/NiO, b) MAPbI<sub>3</sub>/TiO<sub>2</sub>, and c) Z907/TiO<sub>2</sub> films with feedback mode under short-circuit condition with illumination.

A 25 µm diameter Pt wire (Good fellow, Cambridge, UK) was sealed into a 5 cm glass capillary prepared by a Vertical pull pin instrument (PC-10, Japan) (Figure S2a). The ultra-microelectrode (UME) was polished by a grinding instrument (EG-400, Japan) and micro-polishing cloth with 1.0, 0.3 and 0.05 µm alumina powder (Figure S2b). Then the UME was sharpened conically to a RG of 10, where RG is the ratio between the diameters of the glass sheath and the Pt disk. Figure S2c and Figure S2d compare the cyclic voltammeter of a Pt electrode (d=3 mm) and a Pt UME (d=25 um) in the 0.5 mM K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> with a scan rate of 50 mV s<sup>-1</sup>. One can get the electrode size by using the formula of  $i_{\infty} = 4nFDCr_T$ , where  $r_T$  is the radius of the microelectrode, D is the diffusion coefficient of the redox couple.



**Figure S2.** Optical images of (a) a grinding instrument (EG-400, Japan), (b) several ultra-microelectrodes (UME) with 25  $\mu$ m diameter Pt wire (Good fellow, Cambridge, UK) sealed into a 5 cm glass capillary. Cyclic voltammetry of (c) Pt electrode (d= 3 mm) and (d) Pt UME (d=25 um) in 0.5 mM K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> with a scan rate of 50 mV s<sup>-1</sup>.

Figure S3 shows cyclic voltammogram of a Pt UME in 1 mM T<sup>-</sup> electrolyte.



**Figure S3.** Cyclic voltammogram of a Pt UME in 1 mM T<sup>-</sup> (isoperponal/alcohol solution) at a scan rate of 0.05 V s<sup>-1</sup>.



**Figure S4.** (a) The normalized SECM feedback approach curves for the approach of a Pt disk UME towards P1/NiO film in the dark (curve #0) and under illumination by a blue LED. Photon flux density of LED in  $10^{-9}$  mol cm<sup>-2</sup> s<sup>-1</sup>: (1) 2.2, (2) 6.1, (3)11.8, (4) 13.9, (5) 19.8, and (6) 22.4; scanning rate 0.05 V s<sup>-1</sup> E<sub>T</sub>= 0.7 V with electrolyte [T<sup>-</sup>]=1 mM. Curves (#1-6) are calculated curves for an approach of an UME towards an inert insulating surface (curve 0), and to samples with the first order kinetics rate constant  $\kappa$ : (1) 0.0229, (2) 0.0481, (3) 0.0577, (4) 0.0737, (5) 0.0781, and (6) 0.0815; the effective rate constant  $k_{eff} \times 10^{-3}$ cm s<sup>-1</sup>: (1) 2.48, (2) 5.19, (3) 6.24, (4) 7.96, (5) 8.43, (6) 8.81. (b) P1/NiO film under illumination by a red LED Photon flux in  $10^{-9}$  mol cm<sup>-2</sup> s<sup>-1</sup>: (1) 4.19, (2) 6.81, (3)9.44.8, (4) 12.06, (5) 13.11, and (6) 14.68. The first order kinetics rate constant *k* is: (1) 0.0353, (2) 0.0538, (3) 0.0626 (4) 0.0692, (5) 0.0712, and (6) 0.0742, and  $k_{eff}$ 

(×10<sup>-3</sup> cm s<sup>-1</sup>): (1) 3.81, (2) 5.82, (3) 6.76, (4) 7.47, (5) 7.69, and (6) 8.01. (c) The normalized SECM feedback approach curves for the approach of a Pt disk UME towards MAPbI<sub>3</sub>/NiO film in the dark (curve#0) and under illumination by blue LED Photon flux density in 10<sup>-9</sup> mol cm<sup>-2</sup> s<sup>-1</sup>: (1) 2.2, (2) 6.1, (3)11.8, (4) 13.9, (5) 19.8, and (6) 22.4; electrolyte [T<sub>2</sub>]=1 mM, the first order kinetics normalized rate constants  $\kappa$ : (1) 0.0497, (2) 0.0525, (3) 0.0671, (4) 0.0711, (5) 0.0791, (6) 0.0829, and  $k_{\text{eff}} \times 10^{-3}$  cm s<sup>-1</sup>: (1) 3.02, (2) 5.68, (3) 7.24 (4) 7.67, (5) 8.54, and (6) 8.96. (d) MAPbI<sub>3</sub>/NiO film under illumination by a red LED Photon flux density in 10<sup>-9</sup> mol cm<sup>-2</sup> s<sup>-1</sup>: (1) 4.19, (2) 6.81, (3)9.44.8, (4) 12.06, (5) 13.11, and (6) 14.68. The first order kinetics rate constant  $\kappa$ : (1) 0.0539, (2) 0.0731, (3) 0.112, (4) 0.123, (5) 0.127, and (6) 0.132,  $k_{\text{eff}} \times 10^{-3}$  cm s<sup>-1</sup>: (1) 7.90, (2) 10.41, (3) 12.12 (4) 13.38, (5) 13.79, (6) 14.33.



Figure S5. (a) The normalized SECM feedback approach curves for the approach of a Pt disk UME towards Z907-sensitized TiO<sub>2</sub> film in the dark (curve #0) and under illumination by a blue LED. Photon flux density of LED in  $10^{-9}$  mol cm<sup>-2</sup> s<sup>-1</sup>: (1) 2.2, (2) 6.1, (3)11.8, (4) 13.9, (5) 19.8 (6) 22.4; scanning rate  $0.05 Vs^{-1}$ ,  $E_T = 0.7 V$ ,  $[T^-] = 1 mM$ . Curves (#1-6) are calculated curves for an approach of an UME towards an inert insulating surface (curve # 0), and to samples with the first order kinetics rate constant  $\kappa$ : (1) 0.065, (2) 0.069, (3) 0.087 (4) 0.092, (5) 0.102, (6) 0.106; the effective rate constant  $k_{\text{eff}} \times 10^{-3} \text{ cm s}^{-1}$ : (1) 1.15, (2) 1.22, (3) 1.55 (4) 1.64, (5) 1.82, (6) 1.89. (b) Z907-sensitized TiO<sub>2</sub> film under illumination by a red LED. Photon flux density of LED in  $10^{-9}$ mol cm<sup>-2</sup> s<sup>-1</sup>: (1) 4.19, (2) 6.81, (3) 9.44.8, (4) 12.06, (5) 13.11, (6) 14.68 Lines (1-6) are calculated curves for an approach of an UME towards an inert insulating surface (curve# 0), samples with first order kinetics k (1) 0.017 (2) 0.035, (3) 0.044, (4) 0.047, (5) 0.052, (6) 0.055  $k_{\rm eff} \times 10^{-3} \, {\rm cms}^{-1}$  (1) 3.01 (2) 6.23, (3) 7.95 (4) 8.43, (5) 9.37 (6) 9.67 (c) MAPbI<sub>3</sub>-sensitized TiO<sub>2</sub> film in the dark (curve #0) and under illumination by a blue LED. Photon flux density of LED in  $10^{-9}$  mol cm<sup>-2</sup> s<sup>-1</sup>(1) 2.2, (2) 6.1, (3)11.8, (4) 13.9, (5) 19.8, and (6) 22.4; ET= 0.7 V [T<sup>-</sup>] = 1mM. Lines (1-6) samples with first order kinetics k (1) 0.238, (2) 0.251, (3) 0. 321, (4) 0.341, (5) 0.373, (6) 0.391  $k_{\rm eff} \times 10^{-3} \rm cms^{-1}$  (1) 4.21, (2) 4.45, (3) 5.67 (4) 6.02, (5) 6.61 (6) 6.91 (d) Under

illumination by a red LED Photon flux density of  $10^{-9}$  mol cm<sup>-2</sup> s<sup>-1</sup>(1) 4.19, (2) 6.81, (3)9.44.8, (4) 12.06, (5) 13.11 (6) 14.68 .4;, ET= 0.7 V [T<sup>-</sup>]=1mM.Lines (1-6) (1) 0.034, (2) 0.0437 (3) 0.051, (4) 0.056 (5) 0.058, (6) 0.061 and  $k_{\rm eff} \times 10^{-3}$  cms<sup>-1</sup> (1) 5.99, (2) 7.74, (3) 9.01 (4) 9.95, (5) 10.26 (6) 10.66.

## References

- Shen, Y.; Nonomura, K.; Schlettwein, D.; Chuan, Z.; Wittstock, G.; Chem. Eur. J. 2006, 12, 5832-5839.
- Shen, Y.; Tefashe, U.; Nonomura, K.; Loewenstein, T.; Schlettweinb, D.; Wittstock, G.; Electrochimica Acta 2009, 55, 458-464.
- Tefashe, U.; Loewenstein, T.; Miurac, H.; Schlettwein, D.; Wittstock, G.; J. Electroanal. Chem. 2010, 650, 24-30.
- Alemu, G.; Cui, J.; Cao, K.; Li, J.; Shen, Y.; Wang, M. RSC Advances 2014, 4, 51374-51380.