Supporting Information

The Unique Synthesis and Energetic Properties of Novel Fused

Heterocycle: 7-Nitro-4-oxo-4,8-dihydro-[1,2,4]triazolo[5,1-

d][1,2,3,5]tetrazine 2-oxide and Its Energetic Salts

Chengming Bian,^a Xiao Dong,^a Xiuhui Zhang,^b Zhiming Zhou,^{*a,c} Man Zhang^a and Chuan Li^a

[a] School of Chemical Engineering and the Environment, Beijing Institute of Technolog, Beijing, 100081(P.R. China)

[b] Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China[c] State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081(P.R. China), E-mail: zzm@bit.edu.cn

Table of contents

1 X-ray crystallography

Table S1 Crystallographic data and structure refinement parameters for $3 \cdot 3H_2O$ and 7.

Table S2 Band angles and dihedral angles for the structure of $3 \cdot 3H_2O$.

Table S3 Band angles and dihedral angles for the structure of 7.

2 Theoretical study

Table S4 Heats of formation of HBCM and BCM anion.

Figure S1 Optimized geometries for the neutral compound HBCM and its anion.

3 References

1 X-ray crystallography

Compound	3 ·3H ₂ O	7
Formula	C ₃ H ₆ N ₇ NaO ₇	$C_4H_6N_{10}O_4$
Mw	275.14	258.19
Crystal system	orthorhombic	monoclinic
Space group	Pnma	$P2_1/c$
a Å	17.882(5)	10.426(4)
bÅ	6.0919(18)	5.185(2)
c Á	9.281(3)	17.876(7)
VÅ ³	1011.1(5)	960.7(7)
Ζ	4	4
TK	163(2)	163(2)
λÅ	0.71073	0.71073
$ ho_{ m calcd} m mgm^{-3}$	1.807	1.785
μ mm ⁻¹	0.21	0.16
<i>F</i> (000)	560	528
Crystal size mm ⁻³	0.54×0.35×0.22	0.64×0.16×0.08
θ range°	2.8-31.5	2.0-31.5
index ranges	$-26 \le h \le 25$	$-15 \le h \le 14$
	$-8 \le k \le 7$	$-7 \le k \le 7$
	$-13 \le 1 \le 13$	$-25 \le l \le 26$
reflns collected	9667	10973
Independent reflns (R _{int})	18160.028	3161(0.039)
data/retraints/parameters	1816/0/128	3161/0/187
GOF on F ²	1.001	1.003
$RF^2 > 2\sigma(F^2)$	0.038	0.045
$wR(F^2)$	0.107ª	0.120 ^b

Table S1 Crystallographic data and structure refinement parameters for $3.3H_2O$ and 7

Crystals of $3.3H_2O$ and 7 was removed from the flask and covered with a layer of hydrocarbon oil. A suitable crystal was then selected, attached to a glass fiber, and placed in the low-temperature nitrogen stream. Data for $3.3H_2O$ and 7 were collected at 163(2) K using a Rigaku Saturn724 CCD (AFC10/Saturn724+ for 7) diffractometer equipped with a graphite-monochromatized MoK α radiation ($\lambda = 0.71073$ Å) using omega scans. Data collection and reduction were performed and the unit cell was initially refined by using CrystalClear -SM Expert 2.0 r2 software.^[1] The reflection data were also corrected for Lp factors. The structure was solved by direct methods and refined by the least squares method on F² using the SHELXTL-

97 system of programs.^[2] Structure were solved in the space group *Pnma* for $3 \cdot 3H_2O$, $P2_1/c$ for 7, by analysis of systematic absences. In this all-light-atom structure the value of the Flack parameter did not allow the direction of polar axis to be determined and Friedel reflections were then merged for the final refinement. Band angles and dihedral angles of the data collection and refinement are given in Table S2, S3.

	0	0	2
O5—Na1—O5 ⁱ	180.0	Na1—O5—H3	125.1 (11)
O5—Na1—O6 ⁱ	97.42 (4)	Na1 ⁱⁱⁱ —O5—H4	109.7 (15)
O5 ⁱ —Na1—O6 ⁱ	82.58 (4)	Na1—O5—H4	109.7 (15)
O5—Na1—O6	82.58 (4)	H3—O5—H4	105 (3)
O5 ⁱ —Na1—O6	97.42 (4)	Na1—O6—Na1 ⁱⁱⁱ	79.90 (4)
O6 ⁱ —Na1—O6	180.0	Na1—O6—H1	122.3 (11)
O5—Na1—O1 ⁱ	82.52 (3)	Na1 ⁱⁱⁱ —O6—H1	122.3 (11)
O5 ⁱ —Na1—O1 ⁱ	97.48 (3)	Na1—O6—H5	113.8 (15)
O6 ⁱ —Na1—O1 ⁱ	94.91 (3)	Na1 ⁱⁱⁱ —O6—H5	113.8 (15)
O6—Na1—O1 ⁱ	85.09 (3)	H1—O6—H5	104 (3)
O5—Na1—O1	97.48 (3)	H2—O7—H6	108 (2)
O5 ⁱ —Na1—O1	82.52 (3)	N2—N1—C1	119.07 (12)
O6 ⁱ —Na1—O1	85.09 (3)	O2—N2—N3	116.32 (12)
O6—Na1—O1	94.91 (3)	O2—N2—N1	115.88 (12)
O1 ⁱ —Na1—O1	180.0	N3—N2—N1	127.80 (12)
C1—O1—Na1 ⁱⁱ	131.26 (5)	N2—N3—C2	113.26 (11)
C1—O1—Na1	131.26 (5)	C2—N4—C3	100.46 (11)
O4—N7—C3	117.02 (13)	C3—N5—N6	99.36 (11)
01—C1—N1	123.89 (12)	N5—N6—C2	110.98 (11)
O1—C1—N6	121.20 (12)	N5—N6—C1	126.58 (11)

Table S2. Band angles and dihedral angles for the structure of $3 \cdot 3H_2O$.

N1—C1—N6	114.91 (11)	C2—N6—C1	122.44 (11)
N4—C2—N3	127.78 (12)	O3—N7—O4	125.59 (14)
N4—C2—N6	109.71 (12)	O3—N7—C3	117.40 (14)
N3—C2—N6	122.51 (13)	N5—C3—N4	119.49 (13)
Na1 ⁱⁱ —O1—Na1	78.47 (4)	N5—C3—N7	119.10 (13)
Na1 ⁱⁱⁱ —O5—Na1	80.48 (4)	N4—C3—N7	121.42 (13)
Na1 ⁱⁱⁱ —O5—H3	125.1 (11)	C3—N5—N6—C2	0.0
O5—Na1—O1—C1	87.02 (10)	C3—N5—N6—C1	180.0
O5 ⁱ —Na1—O1—C1	-92.98 (10)	Na1 ⁱⁱ —O1—C1—N1	122.71 (7)
O6 ⁱ —Na1—O1—C1	-176.12 (10)	Na1—O1—C1—N1	-122.71 (7)
O6—Na1—O1—C1	3.88 (10)	Na1 ⁱⁱ —O1—C1—N6	-57.29 (7)
O1 ⁱ —Na1—O1—C1	84.3 (3)	Na1—O1—C1—N6	57.29 (7)
O5—Na1—O1—Na1 ⁱⁱ	-137.22 (3)	N2—N1—C1—O1	180.0
O5 ⁱ —Na1—O1—Na1 ⁱⁱ	42.78 (3)	N2—N1—C1—N6	0.0
O6 ⁱ —Na1—O1—Na1 ⁱⁱ	-40.36 (3)	N5—N6—C1—O1	0.0
O6—Na1—O1—Na1 ⁱⁱ	139.64 (3)	C2—N6—C1—O1	180.0
O1 ⁱ —Na1—O1—Na1 ⁱⁱ	-139.98 (3)	N5—N6—C1—N1	180.0
O5 ⁱ —Na1—O5—Na1 ⁱⁱⁱ	23 (7)	C2—N6—C1—N1	0.0
O6 ⁱ —Na1—O5—Na1 ⁱⁱⁱ	137.58 (4)	C3—N4—C2—N3	180.0
O6—Na1—O5—Na1 ⁱⁱⁱ	-42.43 (4)	C3—N4—C2—N6	0.0
O1 ⁱ —Na1—O5—Na1 ⁱⁱⁱ	43.57 (3)	N2—N3—C2—N4	180.0
O1—Na1—O5—Na1 ⁱⁱⁱ	-136.43 (3)	N2—N3—C2—N6	0.0
O5—Na1—O6—Na1 ⁱⁱⁱ	42.20 (4)	N5—N6—C2—N4	0.0
O5 ⁱ —Na1—O6—Na1 ⁱⁱⁱ	-137.80 (4)	C1—N6—C2—N4	180.0

O6 ⁱ —Na1—O6—Na1 ⁱⁱⁱ	108.10 (8)	N5—N6—C2—N3	180.0
O1 ⁱ —Na1—O6—Na1 ⁱⁱⁱ	-40.87 (3)	C1—N6—C2—N3	0.0
O1—Na1—O6—Na1 ⁱⁱⁱ	139.13 (3)	N6—N5—C3—N4	0.0
C1—N1—N2—O2	180.0	N6—N5—C3—N7	180.0
C1—N1—N2—N3	0.0	C2—N4—C3—N5	0.0
O2—N2—N3—C2	180.0	C2—N4—C3—N7	180.0
N1—N2—N3—C2	0.0	O3—N7—C3—N5	180.0
O3—N7—C3—N4	0.0	O4—N7—C3—N5	0.0
O4—N7—C3—N4	180.0		

	-	-	
N2—N1—C1	119.22 (11)	C4—N9—H9B	118.6 (13)
O2—N2—N3	116.32 (11)	H9A—N9—H9B	126.0 (18)
O2—N2—N1	115.23 (11)	C4—N10—H10A	120.7 (14)
N3—N2—N1	128.45 (11)	C4—N10—H10B	119.8 (16)
N2—N3—C2	112.93 (11)	H10A—N10—H10B	119 (2)
C2—N4—C3	100.17 (11)	01—C1—N1	123.58 (12)
C3—N5—N6	99.10 (10)	O1—C1—N6	121.88 (12)
C2—N6—N5	110.59 (10)	N1—C1—N6	114.54 (11)
C2—N6—C1	122.32 (11)	N4—C2—N3	127.15 (12)
N5—N6—C1	127.05 (11)	N4—C2—N6	110.32 (11)
O3—N7—O4	124.86 (12)	N3—C2—N6	122.53 (12)
O3—N7—C3	117.55 (11)	N5—C3—N4	119.81 (12)
O4—N7—C3	117.59 (11)	N5—C3—N7	119.04 (11)
C4—N8—H8A	121.5 (13)	N4—C3—N7	121.15 (12)
C4—N8—H8B	116.6 (13)	N8—C4—N10	120.19 (13)
H8A—N8—H8B	121.2 (18)	N8—C4—N9	120.12 (13)

C4—N9—H9A	114.7 (12)	N10—C4—N9	119.67 (13)
C1—N1—N2—O2	179.46 (12)	N2—N3—C2—N4	-178.60 (12)
C1—N1—N2—N3	-0.4 (2)	N2—N3—C2—N6	0.68 (18)
O2—N2—N3—C2	-179.81 (12)	N5—N6—C2—N4	0.47 (15)
N1—N2—N3—C2	0.08 (19)	C1—N6—C2—N4	178.27 (11)
C3—N5—N6—C2	-0.16 (13)	N5—N6—C2—N3	-178.92 (12)
C3—N5—N6—C1	-177.84 (12)	C1—N6—C2—N3	-1.12 (19)
N2—N1—C1—O1	-179.75 (12)	N6—N5—C3—N4	-0.20 (15)
N2—N1—C1—N6	0.02 (18)	N6—N5—C3—N7	-179.51 (11)
C2—N6—C1—O1	-179.53 (13)	C2—N4—C3—N5	0.47 (16)
N5—N6—C1—O1	-2.1 (2)	C2—N4—C3—N7	179.76 (12)
C2—N6—C1—N1	0.70 (18)	O3—N7—C3—N5	178.83 (12)
N5—N6—C1—N1	178.13 (12)	O4—N7—C3—N5	-0.97 (18)
C3—N4—C2—N3	178.83 (13)	O3—N7—C3—N4	-0.47 (19)
C3—N4—C2—N6	-0.52 (14)	O4—N7—C3—N4	179.73 (13)

2 Theoretical study

The standard enthalpies of formation for neutral compound HBCM and its anion were calculated by the Gaussian-3 (G3)^[3] methods using the Gaussian 03 package.^[4] All of the optimized structures were predicted to be genuine minima with all real vibrational frequencies.

Two low-lying structures were found for the neutral compounds HBCM, namely N6-H and N8-H (Fig. 1). The global minimum is the N8-H tautomer, which lies below N6 by 7.9 kcal/mol.

In the present study, theoretical enthalpies of formation at 0 K are calculated according to Equation 1,

$$\Delta_{f}H^{o}(M,0K) = \sum_{\text{atoms}} x\Delta_{f}H^{o}(X,0K) - \sum D_{0}(M) = \sum_{\text{atoms}} x\Delta_{f}H^{o}(X,0K) - \left(\sum_{\text{atoms}} x\varepsilon_{0}(X) - \varepsilon_{0}(M)\right)$$

(Equation 1)

In the Equation 1, **M** will be used to stand for the molecule, and **X** to represent each element which makes up **M**, and $_{\mathbf{X}}$ will be the number of atoms of **X** in **M**. $\varepsilon_0(X)$ and $\varepsilon_0(M)$ are the total energies of the atom and molecule, respectively. D₀(M) is the atomization energy of the molecule, which are readily calculated from the total energies of the molecule $\varepsilon_0(X)$ and $\varepsilon_0(M)$. $\Delta_f H^0(X,0K)$ is the heats of formation of the atoms at 0K, which can be taken directly from experimental data^[5]. $\Delta_f H^0(M,0K)$ is the heat of formation of the molecule at 0 K.

Theoretical enthalpies of formation at 298 K, $\Delta_f H^0(M, 298K)$, are calculated by correction to $\Delta_f H^0(M, 0 K)$ as follows:

$$\Delta_f H^o(M, 298K) = \Delta_f H^o(M, 0K) + \left(H^o_M(298K) - H^o_M(0K)\right) - \sum_{\text{atoms}} x \left(H^o_X(298K) - H^o_X(0K)\right)$$

Equation 2)

In the Equation 2, $(H^0_X(298K) - H^0_X(0K))$ is the enthalpy corrections of the atomic elements, they are taken directly from experimental data.^[3] $(H^0_M(298K) - H^0_M(0K))$ is the enthalpy corrections of the molecule.

Table S4 The enthalpies of formation ($\Delta_f H$) and total energies after zero-point energy correction

(E_{ZPE}, in hartree) calculated by the Gaussian-3 (G3) method.

	$\Delta_{\rm f} {\rm H}(298{\rm K})({\rm kJ\ mol^{-1}})$	E _{ZPE} (in hartree)
Anion	62.046	-797.969181
N6 (neutral)	426.917	-798.412706
N8 (neutral)	392.512	-798.425346

Figure S1 The optimized geometries for the neutral compound HBCM and its anion by the Gaussian-3 (G3) method. The distances are given in angstrom.

3 References

- 1 CrystalClear: SM Expert 2.0 r2, An Integrated Program for the Collection and Processing of Area Detector Data, Rigaku Corporation, **2009**.
- Sheldrick, G. M. SHELXTL-97, Structure Determination Software Suite. Bruker AXS, Madison WI, 2008.
- 3 a) Curtiss, L. A.; Raghavachari, K.; Redfern P. C.; Rassolov, V.; Pople J. A. J. Chem. Phys. 1998, 109, 7764–7776; b) Curtiss, L. A.; Redfern, P. C.; Rassolov, V.; Kedziora, G.; Pople, J. A. J. Chem. Phys. 2001, 114, 9287–9295.
- 4 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J.

J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision D.02*, Gaussian, Inc., Wallingford CT, **2004**.

5 Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 14, **1985**, Suppl. No. 1.