Metal-Organic Framework-derived Porous Mn_{1.8}Fe_{1.2}O₄ Nanocubes with an interconnected channel structure as High-Performance Anodes for Lithium Ion Batteries

Fangcai Zheng^a, Dequan Zhu^{a#}, Xiaohui Shi and Qianwang Chen^{a,b} ^aHefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China.

^bHigh Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

E-mail: cqw@ustc.edu.cn. Fax and Tel: +86 551 63603005.

Figure S1. TEM image of $Mn_3[Fe(CN)_6]_2 \cdot nH_2O$ nanocubes.

Figure S2. XRD pattern of $Mn_3[Fe(CN)_6]_2 \cdot nH_2O$ nanocubes.

Figure S3. IR spectrum of $Mn_3[Fe(CN)_6]_2 \cdot nH_2O$ nanocubes.

Figure S4. TGA curve of $Mn_3[Fe(CN)_6]_2 \cdot nH_2O$ nanocubes under a flow of the mixed carrier gas (80 vol% He and 20 vol% O₂), with a heating rate of 20 °C min⁻¹.

Figure S5. IR absorbance variation of (a) H_2O_2 , (b) CO_2 , (c) NO_2 and $(CN)_2$ as a function of time.

Figure S6. MS intensity variation of (a) H_2O , (b) CO_2 , (c) NO_2 and $(CN)_2$ as a function of time.

Figure S7. The high-magnification FESEM (a) and TEM (b) images of $Mn_{1.8}Fe_{1.2}O_4$ nanocubes.

Figure S8. The coulombic efficiency of the $Mn_{1.8}Fe_{1.2}O_4$ nanocubes for lithium storage at a current density of 200 mA g⁻¹.

Figure S9. Morphological analysis of the electrode cycled for 20 cycles at a current density of 200 mA g^{-1} .

Figure S10. XRD pattern of as-prepared Mn_xFe_{2-x}O₃ obtained at 600 °C.

Figure S11. FESEM images of $Mn_xFe_{2-x}O_3$ sample at different magnification (a and b). TEM images of $Mn_xFe_{2-x}O_3$ sample at different magnification (c and d).

Figure S12. Discharge-charge curves of $Mn_xFe_{2-x}O_3$ sample (600 °C) at a current density of 200 mA g⁻¹.

Figure S13. Rate capability test for the $Mn_xFe_{2-x}O_3$ nanocubes at various current densities (100-1600 mA g⁻¹).