Supporting Information

Electronic and optical properties of mixed Sn / Pb organohalide perovskites: A first principles investigation

Edoardo Mosconi,^a Paolo Umari,^{b,c} Filippo De Angelis^{a,*}

^a Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), CNR-ISTM, Via Elce di

Sotto 8, I-06123, Perugia, Italy.

^b Dipartimento di Fisica e Astronomia, Universita` di Padova, via Marzolo 8, I-35131 Padova, Italy, ^c CNR-IOM DEMOCRITOS, Theory@Elettra Group, c/o Sincrotrone Trieste, Area Science Park, Basovizza, I-34012 Trieste, Italy

Figure S1. SR-DFT DOS using 4x4x4 and 8x8x8 k-point grid of MAPbI3 I4cm perovskite.

Table S1. HOMO and LUMO energy levels shifts (eV) by varying the Sn/Pb ratio calculated at the SOC-GW level and compared to the experimental measurements by Ogomi et al. VB and CB shifts evaluated from the SOC-GW DOS are also reported. Energy shifts are referred to the pure MAPbI₃ perovskites (set as zero). VB and CB values are calculated at 1.4 % of the maximum VB peak of the MAPbI₃ calculated SOC-GW DOS.

			Sn conte	nt		
	0.00	0.25	0.5	0.75	1.00	
Exp.						
ΔE^{HOMO}	0.00	0.27	0.44	0.47	0.66	
$\Delta E^{\rm LUMO}$	0.00	0.07	0.21	0.19	0.25	
Gap ^{EXP}	1.51	1.31	1.28	1.23	1.10	
SOC-GW						
ΔE^{HOMO}	0.00	0.34	0.46	0.76	0.99	
ΔE^{LUMO}	0.00	0.08	0.23	0.32	0.35	

Gap ^{H-L}	1.64	1.37	1.41	1.20	1.00	
ΔE^{VB}	0.00	0.20	0.35	0.53	0.64	
ΔE^{CB}	0.00	0.08	0.17	0.27	0.19	
Gap ^{VB-CB}	1.74	1.62	1.56	1.48	1.29	
SOC-DFT						
ΔE^{HOMO}	0.00	0.20	0.28	0.50	0.87	
ΔE^{LUMO}	0.00	0.06	0.18	0.30	0.50	
Gap ^{H-L}	0.53	0.39	0.43	0.36	0.16	
ΔE^{VB}	0.00	0.12	0.19	0.30	0.47	
ΔE^{CB}	0.00	0.04	0.10	0.18	0.29	
Gap ^{VB-CB}	0.76	0.68	0.67	0.64	0.56	
SOC-DFT V	C-RELAX					
ΔE^{HOMO}	0.00	0.27	0.38	0.61	0.82	
ΔE^{LUMO}	0.00	0.06	0.22	0.30	0.50	
Gap ^{H-L}	0.53	0.34	0.39	0.23	0.21	
ΔE^{VB}	0.00	0.17	0.27	0.38	0.52	
ΔE^{CB}	0.00	0.06	0.17	0.20	0.31	
Gap ^{VB-CB}	0.76	0.65	0.65	0.58	0.55	
SR-DFT VC	C-RELAX					
ΔE^{HOMO}	0.00	0.21	0.33	0.58	0.81	
ΔE^{LUMO}	0.00	-0.12	-0.08	-0.19	-0.19	
Gap ^{H-L}	1.43	1.11	1.03	0.66	0.43	
ΔE^{VB}	0.00	0.13	0.25	0.35	0.51	
ΔE^{CB}	0.00	-0.03	-0.03	-0.10	-0.12	
Gap ^{VB-CB}	1.41	1.26	1.14	0.96	0.78	

Figure S2. Linear fit of the experimental VB/CB against calculated HOMO/LUMO and CB/VB values, see text for definitions.

Figure S3. SR-DFT DOS of the I4cm and P4mm phase for the MASnI₃ perovskite.

	Structure from Ref. 17					Structure 1					
Sn/Pb	0/4					0/4					
	m_h	m _e	μ	A _h	Ae	m _h	m _e	μ	A _h	Ae	
М	0.28	0.20	0.12	3.18	7.61	0.18	0.16	0.08	1.93	3.87	
Z	0.24	0.17	0.10	1.66	3.37	0.23	0.16	0.09	0.15	0.68	
Х	0.21	0.17	0.09	2.34	5.10	0.17	0.15	0.08	2.09	3.87	
Α	0.25	0.18	0.11	3.69	7.81	0.17	0.15	0.08	1.78	3.81	
R	0.19	0.15	0.08	3.32	6.29	0.17	0.14	0.07	1.75	3.50	
AVG	0.23	0.17	0.10	2.84	6.04	0.18	0.15	0.08	1.54	3.15	
		(Structure	1		Structure 1					
	1/3					2/2					
	m_h	m _e	μ	A _h	Ae	m _h	m _e	μ	A _h	Ae	
М	0.16	0.15	0.08	1.87	3.93	0.15	0.16	0.08	2.00	4.05	
Z	0.20	0.15	0.09	0.72	1.67	0.17	0.16	0.08	0.12	0.49	
Х	0.15	0.15	0.07	2.09	3.94	0.14	0.15	0.07	2.21	4.00	
А	0.15	0.14	0.07	0.98	3.51	0.14	0.14	0.07	1.72	3.81	
R	0.15	0.13	0.07	1.11	2.45	0.13	0.13	0.07	1.75	3.50	
AVG	0.16	0.14	0.08	1.35	3.10	0.15	0.15	0.07	1.56	3.17	
	Structure 1					Structure 1					
	3/1					4/0					
	m _h	m _e	μ	A _h	Ae	m _h	m _e	μ	A _h	A _e	
М	0.13	0.17	0.07	2.49	3.99	0.09	0.19	0.06	3.13	5.90	
Z	0.15	0.16	0.08	1.44	2.61	0.11	0.15	0.06	0.22	0.67	

Table S2. Effective masses (m_h, m_e, μ) and Rashba coefficients (A_h, A_e) calculated for electrons and holes by SOC-DFT.

Х	0.12	0.16	0.07	2.03	4.12	0.09	0.16	0.06	3.32	6.33
Α	0.12	0.14	0.06	1.84	2.03	0.08	0.13	0.05	2.61	5.39
R	0.11	0.13	0.06	0.12	1.52	0.08	0.11	0.05	2.47	5.45
AVG	0.13	0.15	0.07	1.58	2.85	0.09	0.15	0.06	2.35	4.75
		Structu	ure from H	Ref. 16						
	4/0									
	m_h	m _e	μ	A _h	Ae					
М	0.11	0.19	0.07	3.44	5.35					
Z	0.11	0.16	0.07	1.68	2.87					
Х	0.09	0.16	0.06	2.03	4.43					
Α	0.10	0.14	0.06	3.52	6.00					
R	0.08	0.12	0.05	2.83	6.12					
AVG	0.10	0.15	0.06	2.70	4.95					

Table S2. Effective masses (m_h , m_e and μ) calculated by SOC-GW.

GW	Struct	ture from F	Ref. 17	Structure 1			
Sn/Pb		0/4		0/4			
	m _h m _e		μ	m_h	m _e	μ	
М	0.26 0.21		0.12	0.17	0.17	0.09	
Z	0.21	0.19	0.10	0.21	0.21 0.17		
Х	0.19	0.18	0.09	0.16	0.16 0.16		
Α	0.23	0.20	0.11	0.16	0.16	0.08	
R	0.17	0.17	0.08	0.15	0.15	0.07	
AVG	0.21	0.19	0.10	0.17	0.16	0.08	
		Structure 1	l	S	tructure 1		
Pb/Sn		1/3			2/2		
	m _h m _e		μ	m _h	me	μ	
М	0.12	0.16	0.07	0.14	0.17	0.07	
Z	0.15	0.16	0.08	0.15	0.16	0.08	
Х	0.12	0.15	0.07	0.13	0.16	0.07	
Α	0.12	0.12 0.14		0.13	0.15	0.07	
R	0.11	0.13	0.06	0.12	0.13	0.06	
AVG	0.13	0.15	0.07	0.13	0.15	0.07	
		Structure 1	l	Structure 1			
Pb/Sn		3/1		4/0			
	m _h	m _e	μ	m _h	m _e	μ	
М	0.11	0.16	0.06	0.08	0.22	0.06	
Z	0.12	0.15	0.07	0.09	0.17	0.06	
X	0.10	0.14	0.06	0.07	0.19	0.05	
Α	0.10	0.13	0.06	0.07	0.16	0.05	
R	0.09 0.12		0.05	0.06	0.13	0.04	
AVG	0.10	0.14	0.06	0.07	0.17	0.05	

Figure S4. Calculated SOC-GW band structures for the investigated series.

