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Experimental Section 

Materials 

All reagents were of analytical grade and used without further purification. Cobalt 

nitrate (Co(NO3)2·6H2O), urea (CO(NH2)2), dicyanodiamine (C2H4N4), Ti mesh, and 20 wt% 

Pt/C were obtained from Sinopharm Chemical Reagents Beijing Co. and used as received. 

Water was supplied with a Barnstead Nanopure Water System (18.3 M cm). 

Synthesis of N-doped carbon-coated cobalt nanorods supported on a Ti mesh 

(Co@NC/Ti) 

The synthesis involved two major steps. In the first step, Co3O4 nanorods was grown 

on a Ti mesh by adopting a hydrothermal method and calcination process reported in the 

literature.
S1

 In brief, 0.582 g (2 mmol) of Co(NO3)2·6H2O and 0.6 g (10 mmol) of CO(NH2)2 

were dissolved in 50 mL of water under stirring, and then transferred into a Teflon-lined 

stainless steel autoclave, into which was immersed a piece of Ti mesh (20 mm × 20 mm) that 

was pretreated by hydrofluoric acid for 1 min and distilled water successively. The liner was 

sealed and heated at 90 C for 8 h in an electrical oven. After cooling down naturally to room 

temperature, the purple-colored mesh, which was presumably Co(OH)2 on Ti, was removed 

from the autoclave, rinsed with distilled water several times, and subject to thermal annealing 

at 450 C for 4 h in air to produce Co3O4 nanorods supported on Ti mesh (Co3O4/Ti). 

In the second step, the Co3O4/Ti prepared above was put on top of the dicyanodiamine 

powders (2 g) that were placed in a closed porcelain crucible. The samples were heated at 

450 °C for 2 h, then at 700 °C for 2 more hours in an Ar atmosphere at a heating rate of 

5 °C/min. Thermal decomposition of dicyanodiamine led to the formation of carbon that 

reduced Co3O4 into Co at high temperatures and concurrently served as an overcoating layer, 

affording Co@NC/Ti hybrids.  

Co nanowires supported on Ti mesh without a N-doped carbon shell was synthesized 

by reducing the Co3O4 nanowires on Ti mesh by H2 at 600 °C. 
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Characterization 

Scanning electron microscopic (SEM) analysis was carried out with a FEI NOVA 

NanoSEM 430 field-emission microscope. Transmission electron microscopic (TEM) 

measurements were carried out with a JOEL JEM 2100F microscope. Powder X-ray 

diffraction (XRD) patterns were recorded on a Bruke D8 Advance powder X-ray 

diffractometer with Cu Kα (λ = 0.15406 nm) radiation. X-ray photoelectron spectroscopic 

(XPS) measurements were performed using an ESCALAB 250.  

Electrochemistry 

Electrochemical measurements were performed with an electrochemical workstation 

(CHI 760C, CH Instruments Inc.) in a 0.5 M H2SO4 aqueous solution. A Ag/AgCl electrode 

(saturated KCl) and platinum wire were used as the reference and counter electrode, 

respectively. The Co@NC/Ti prepared above was used directly as a binder-free working 

electrode. The current densities were evaluated in terms of the geometric area of Co@NC/Ti. 

Polarization curves were acquired by sweeping the potential from 0 to 0.8 V (vs. Ag/AgCl) 

at a potential sweep rate of 5 mV/s. Ohmic losses were compensated electronically. The 

accelerated stability tests were performed in 0.5 M H2SO4 at room temperature by potential 

cycling between 0 and 0.6 V (vs. Ag/AgCl) at a sweep rate of 100 mV/s for a given number 

of cycles. Current-time responses were monitored by chronoamperometric measurements for 

8 h. In order to study the HER activity of Co@NC/Ti in basic media and neutral media, 1 M 

KOH (pH =14) and 0.1 M phosphate buffer (pH = 7) were used as the electrolytes instead of 

0.5 M H2SO4.  

In order to study the effects of the Ti mesh, the N-doped carbon-coated Co nanowires 

(Co@NC) powder was obtained by ultrasonic stripping of Co@NC/Ti. 4 mg of the catalyst 

powders was dispersed in 1 mL of 4:1 (v/v) water/ethanol mixed solvents along with 80 μL of 

a Nafion solution, and the mixture was sonicated for 30 min. Then, 5 μL of the above solution 

was dropcast onto the surface of a glassy carbon disk electrode at a catalyst loading of 0.285 

mg/cm
2
, which was used as the working electrode. 

In all measurements, the Ag/AgCl reference electrode (in saturated KCl) was 

calibrated with respect to a reversible hydrogen electrode (RHE). The calibration was 

performed in a high-purity H2 (99.999%) saturated electrolyte with a Pt wire as the working 

electrode and counter electrode. Cyclic voltammograms (CVs) were collected at a scan rate 

of 1 mV/s, and the average of the two potentials at which the current crossed zero was taken 

as the thermodynamic potential for the hydrogen electrode reactions. In 0.5 M H2SO4, 

EAg/AgCl = ERHE + 0.273 V. In 1 M NaOH, EAg/AgCl = ERHE + 0.972 V. In 0.1 M phosphate 

buffer, EAg/AgCl = ERHE + 0.538 V.  

 

 

  



ESI-3 
 

 

Figure S1. (a, b) SEM images and (c) XRD results of Co3O4 nanorod arrays on a Ti mesh. 

 

 
Figure S2. Energy dispersive X-ray (EDX) spectrum of Co@NC/Ti. 

 

 

Figure S3. TEM images of Co3O4 nanorods. 
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Figure S4. (a, b) SEM images and (c) XRD patterns of Co/Ti obtained by H2 reduction. 

 

 

Figure S5. (a) HER polarization curves of Co@NC/Ti in 1 M KOH. Potential sweep rate 5 mV/s. (b) 

Corresponding Tafel plots (overpotential versus log current density) derived from (a). (c) Current–time 

plots of the Co@NC/Ti electrode at the applied potential of 0.3 V (vs RHE).  
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Figure S6. (a) HER polarization curves of Co@NC/Ti in 0.1 M phosphate buffer (pH = 7). Potential 

sweep rate 5 mV/s. (b) Corresponding Tafel plots (overpotential versus log current density) derived 

from (a). (c) Current–time plots of the Co@NC/Ti electrode at the applied potential of 0.3 V (vs RHE).  

 

 
Figure S7. Current–time plots of the (a) Co/Ti and (b) Co3O4/Ti electrode at the applied potential of 

0.35 V (vs RHE) and 0.45 V (vs RHE), respectively.  

 

 
Figure S8. (a) HER polarization curves in 0.5 M H2SO4 with Co@NC on a glassy carbon electrode. 
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