Supporting Information

Highly efficient photochemical CO₂ conversion to CO over Bi₂WO₆ hybridized with g-C₃N₄ under visible light

Mengli Li, Lingxia Zhang*, Xiangqian Fan, Yajun Zhou, Meiying Wu and Jianlin Shi*

State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China

E-mail addresses: jlshi@mail.sic.ac.cn (J. Shi), zhlingxia@mail.sic.ac.cn(L. Zhang)

Figure S1. SEM image of the g-C₃N₄-0.1/Bi₂WO₆ (a) and the corresponding element mappings of the sample: merged W and C elements (b), W element and (d) C element

Figure S2 VB XPS of spectra of $g-C_3N_4$ and Bi_2WO_6 (solid lines: band position of pure $g-C_3N_4$ and Bi_2WO_6 ; dotted lines: estimated band position for the two samples)

Figure S3 FT-IR spectra of $g-C_3N_4$, Bi_2WO_6 and $g-C_3N_4-0.1/Bi_2WO_6$ samples (a), expanded spectrum corresponding to the marked spectrum of $g-C_3N_4-0.1/Bi_2WO_6$.

The chemical structures of the heterojunctions were further studied by the FTIR spectra as shown in Figure S2. All characteristic absorption bands of $g-C_3N_4$ and Bi_2WO_6 appear in the spectra of $g-C_3N_4-0.1/Bi_2WO_6$, indicating the coexistence of the two semiconductors, which is consistent with the XRD results. The presence of new peak at 1280 cm⁻¹ may due to the stretching mode of C-O-C bond.¹ For the $g-C_3N_4$ sample, the sharp peak at 807 cm⁻¹ which is caused by the breathing vibration of s-triazine ring system was observed.² Besides, the broad peaks between 3500 cm⁻¹ and 3000 cm⁻¹ were originated from the N-H and O-H stretches.³ Several typical absorption band in the second region of 1800-900 cm⁻¹ are attributed to characteristic stretching vibration signals of the tri-s-triazine heterocyclic rings.⁴

Figure S4. Time courses of photocatalytic CO and O₂ production over $g-C_3N_4-0.1/Bi_2WO_6$ under visible-light irradiation. Conditions: 0.1 g catalyst, reaction temperature, 25 °C, ambient pressure, 300 W Xe-lamp (λ >420 nm).

Figure S5. CO evolution on g-C₃N₄-0.1/Bi₂WO₆ samples with and without H₂O in feed gas for 8h under visible light rradiation

Figure S6. Time-dependent increasement of CO generation over g-C₃N₄-0.1/Bi₂WO₆ composites prepared at 160 °C, 18h.

Figure S7. XRD patterns of g-C₃N₄-0.1/Bi₂WO₆ samples (used and fresh)

CO₂ + 2H⁺ + 2e- ──► HCOOH	$E_{redox}^{0} = -0.61 V$ (R1)
$CO_2 + 2H^+ + 2e - \longrightarrow CO + H_2O$	E^{0}_{redox} = -0.53 V (R2)
$CO_2 + 2H^+ + 2e \longrightarrow HCHO + H_2O$	E ⁰ _{redox} = - 0.48 V (R3)
$CO_2 + 2H^+ + 2e^- \longrightarrow CH_3OH + H_2O$	E ⁰ _{redox} = - 0.38 V (R4)
$CO_2 + 8H^+ + 8e \longrightarrow CH_4 + 2H_2O$	E ⁰ _{redox} = - 0.24 V (R5)
2H ⁺ + 2e- → H ₂	E_{redox}^{0} = - 0.41 V (R6)

Scheme S1. Equations of the electeochemical CO₂ reduction potentials versus the NHE at pH 7⁵

- 1. J. A. Dean, Lange's Chemistry Hadbook Version 13th, 1991, 1464.
- 2. Y. Li, J. Zhang, Q. Wang, Y. Jin, D. Huang, Q. Cui, and G. Zou, J. Phys. Chem. B, 2010, 114, 9429-9434.
- 3. P. Niu, L. Zhang, G. Liu, and H. Cheng, Adv. Func. Mater., 2012, 22, 4763-4770.
- 4. Q. Xiang, J. Yu and M. Jaroniec, J. Phys. Chem. C, 2011, 115, 7355-7363.
- 5. S. Habisreutinger, L. Schmidt-Mende and J. Stolarczyk, Angew. Chem. Int. Ed., 2013, 52, 7372-7408.