Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Development of Zwitterionic Polyurethanes with Multi-Shape Memory Effects and Self-healing

Properties

Shaojun Chen*, Funian Mo, Yan Yang, Florian-Johannes Stadler, Shiguo Chen, Haipeng Yang, Zaochuan Ge*,

Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.

E-mail: S.J.Chen, <u>chensj@szu.edu.cn</u>; Z.C.Ge <u>gezc@szu.edu.cn</u>;

Supporting Information

Test 1: Shape Memory Behavior Testing

The temperature-induced shape-memory behaviors were determined with cyclic thermo-mechanical analysis in accordance with. All samples were dried at 100°C *in vacuo* for 24h and cut in rectangular pieces of approximately 10mm×2.0mm×0.5mm.

The test setups

1) For dual-shape-memory cycles: (1) heating to ca.T_g+20°C (based on DSC) and equilibrated for 20 min; (2) uniaxially stretching to strain (ε_{load}) by ramping force from 0.001N to 1N at a rate of 0.25N/min; equilibration for 3 min; (3) fixing the strain (ε) by quickly cooling to ca. T_g-20°C with q=-10°C/min, followed by equilibration for 10min; (4) unloading external force 0N at a rate of 0.25N/min; (5) reheating to ca.T_g+20°C at a rate of 4°C/min and followed by equilibration for 40min; the recovery strain (ε_{rec}) is finally recorded.

2) For triple-shape-memory cycles: (1) heating to ca. T_g+40 °C (based on DSC) and equilibrated for 20 min; (2) uniaxially stretching by ramping force from 0.001N to 1N at a rate of 0.25N/min; equilibration for 3 min; (3) fixing the strain by quickly cooling to T_g with q=-10°C/min, followed by equilibration for 10min; (4) further fixing the strain by quickly cooling to T_g-20 °C with q=-10°C/min, followed by equilibration for 10min; (5) unloading external force 0N at a rate of 0.25N/min; (6) reheating to T_g at a rate of 4°C/min and followed by equilibration for 40min; (7) reheating to ca. T_g+40 °C at a rate of 4°C/min and followed by equilibration for 40min.

3) For quadruple-shape-memory cycles: (1) heating to T_g +60°C (based on DSC) and equilibrated for 20 min; (2) uniaxially stretching by ramping force from 0.001N to 1N at a rate of 0.25N/min; equilibration for 3 min; (3) fixing the strain by quickly cooling to T_g +45°C with q=-10°C/min, followed by equilibration for 10min; (4) further fixing the strain by quickly cooling to T_g +30°C with q=-10°C/min, followed by equilibration for 10min; (5) further fixing the strain by quickly cooling to 0°C with q=-10°C/min, followed by equilibration for 10min; (6) unloading external force 0N at a rate of 0.25N/min; (7) reheating to T_g +30°C at a rate of 4°C/min and followed by equilibration for 40min. (8) further reheating to T_g +45°C at a rate of 4°C/min and followed by equilibration for 40min.

Calculations of shape memory behaviors

For dual-shape memory effect, the shape fixity (R_f) and shape recovery (R_r) were calculated using equations (1) and (2) below:

$$R_{f} = 100\% \times \epsilon/\epsilon_{load} \tag{1}$$

$$R_{r} = 100\% \times (\epsilon - \epsilon_{rec})/\epsilon$$
⁽²⁾

Where ε_{load} represents the maximum strain under load, ε is the fixed strain after cooling and load removal, and ε_{rec} is the strain after recovery.

For triple-shape and quadruple-shape memory effects, equations (1) and (2) are expanded to equations (3) and (4)

$$R_{f}(X \rightarrow Y) = 100\% \times (\varepsilon_{y} - \varepsilon_{x})/(\varepsilon_{y, \text{load}} - \varepsilon_{x})$$
(3)

$$R_{r}(Y \rightarrow X) = 100\% \times (\varepsilon_{y} - \varepsilon_{x, rec}) / (\varepsilon_{y} - \varepsilon_{x})$$
(4)

Where X and Y denote two different shapes, respectively, $\varepsilon_{y,load}$ represents the maximum strain under load, ε_y and ε_x are fixed strains after cooling and load removal, and $\varepsilon_{x,rec}$ is the strain after recovery.

Figure S1. XPS-C_{1s} spectra of Zwitterionic shape memory polyurethane

Figure S2. FT-IR Spectra in the region of C=O vibration of zwitterionic shape memory polyurethane with different MDEAPS content (1-ZSMPU0; 2-ZSMPU2; 3-ZSMPU4; 4-ZSMPU5; 5-ZSMPU6; 6-ZSMPU8)

Figure S3. DSC cooling curves of zwitterionic shape memory polyurethane with different MDEAPS content (1-

ZSMPU0; 2-ZSMPU2; 3-ZSMPU4; 4-ZSMPU5; 5-ZSMPU6; 6-ZSMPU8)

Figure S4. DTG curves of zwitterionic shape memory polyurethane with different MDEAPS content (1-ZSMPU0; 2-ZSMPU2; 3-ZSMPU4; 4-ZSMPU5; 5-ZSMPU6; 6-ZSMPU8)

Figure S 5. DMA curves (A)E'(T); b) tan $\delta(T$)) of zwitterionic shape memory polyurethanes determined under 10 Hz and a heating rate of 1.0 K/min

Figure S6 Dual-shape memory behaviors of ZSMPU with different MDEAPS content (A-ZSMPU0; B-ZSMPU2; C-ZSMPU4; D-ZSMPU5; E-ZSMPU6; F-ZSMPU8)

Figure S7. photos showing the quadruple-shape-memory behaviours of ZSMPU4 (a-original shape; b-the fixed temporary shape 1 at 73°C after the first deformation at 88°C; c--the fixed temporary shape 2 at 58°C after the second deformation at 73°C; d--the fixed temporary shape 3 at 0°C after the third deformation at 58°C; e-the recovering shape at 58°C on the first shape recovery; f--the recovering shape at 73°C on the second shape recovery; g--the recovering shape at 88°C on the third shape recovery)

Figure S8 Dependency of Saturated moisture absorption on MEDAPS content

Figure S9 Log-Log plot showing the Moisture absorption of ZSMPU with different MDEAPS content

Samples	Strain fixity	Strain fixity	Strain Recovery	Strain Recovery	Total strain recovery
	1(%)	2(%)	1(%)	2(%)	(%)
ZSMPU2	48.88	98.05	101.0	89.68	97.50
ZSMPU4	72.08	98.80	101.80	72.08	91.20
ZSMPU5	85.72	99.30	87.00	72.85	81.91

Table S1. Strain fixity and strain recovery in each step for triple-shape memory effect of ZSMPUs

Strain fixity 1: Strain fixity on first step; Strain fixity 2: Strain fixity on second step; Strain Recovery 1: Strain recovery on first step; Strain Recovery 2: Strain recovery on second step;