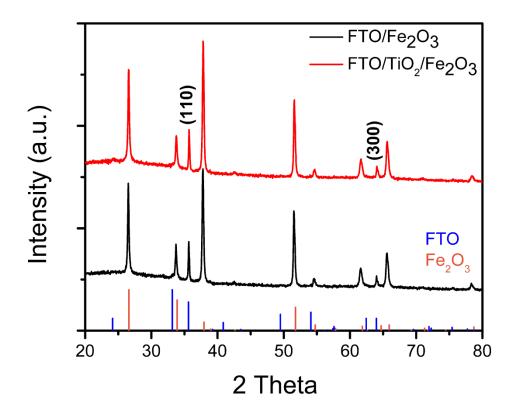
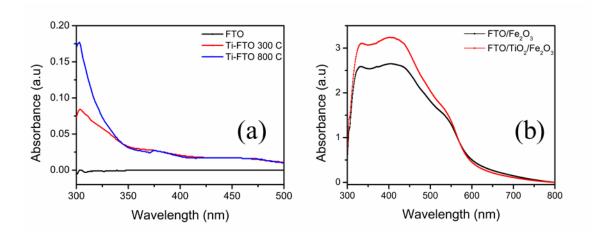
Electronic Supplementary Information (ESI)

Bifunctional TiO₂ underlayer for α–Fe₂O₃ Nanorod based PEC cell: Enhanced interface and Ti⁴⁺ doping

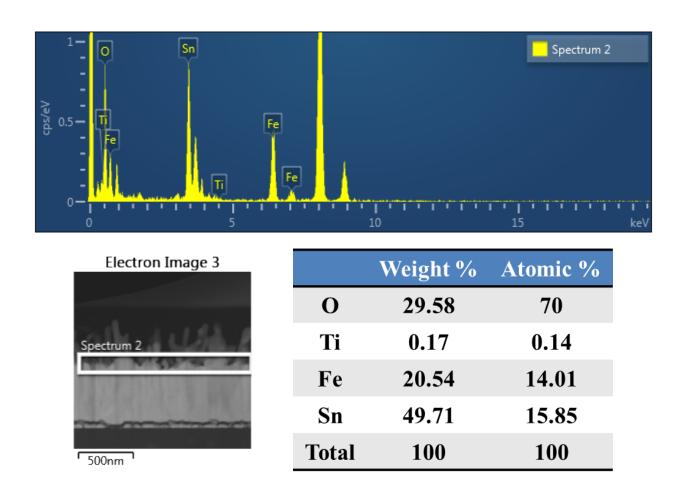
Alagappan Annamalai^a, Pravin S Shinde^{a,b}, Arunprabaharan Subramanian^a, Jae Young Kim^b, Jin Hyun Kim^b, Sun Hee Choi^c, Jae Sung Lee^b and Jum Suk Jang^{a*}

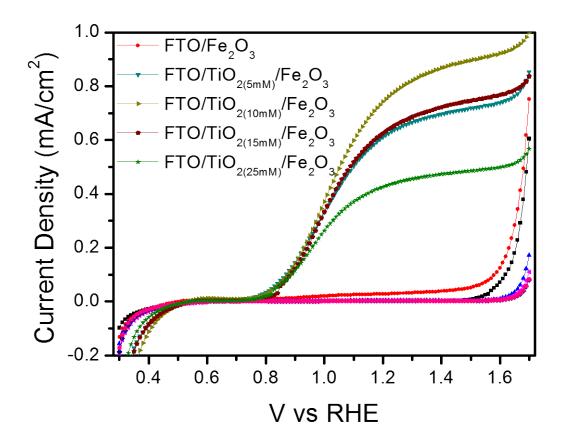

^aDivision of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea

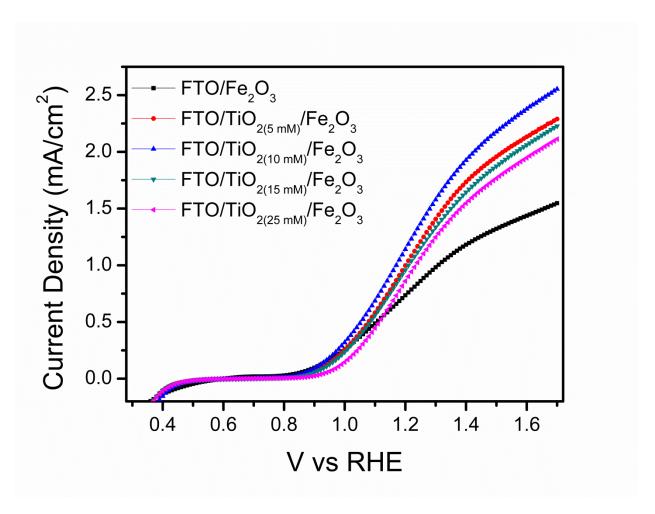
^bSchool of Energy and Chemical engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 689-798, Republic of Korea

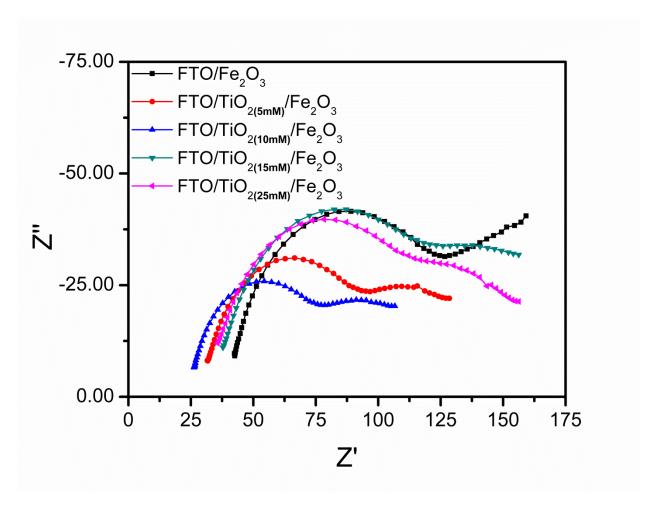

^cPohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea

^{*} Corresponding author. E-mail address: jangjs75@jbnu.ac.kr


1. Supporting figures and captions.


Fig. S1.X-ray diffraction patterns of FTO/ α –Fe₂O₃ and FTO/TiO₂/ α –Fe₂O₃ photoanodes annealed at 800°C. With the exception of FTO substrate peaks, all other peaks can be indexed to α –Fe₂O₃ (JCPDS card # 33–0664). Both FTO/ α –Fe₂O₃ and FTO/TiO₂/ α –Fe₂O₃ samples display similar XRD patterns with a predominant (110) diffraction peak, which has been suggested as preferential direction for electron transport in hematite photoanodes.¹


Fig. S2. (a) Optical property of FTO/TiO₂ samples sintered at various temperatures, which shows the absorption coefficient as a function of wavelength. The absorption edges near 350 nm are characteristic of TiO₂ thin films,² suggesting that the FTO substrates are successfully modified with TiO₂ layers after spin coating. Although 800°C sintered FTO/TiO₂ sample shows the highest value of absorption coefficient, this can result from the difference in film thickness. (b) FTO/TiO₂/α–Fe₂O₃ photoanodes annealed at 800 °C showed higher absorption when compared to FTO/α–Fe₂O₃ photoanodes. Higher absorption can be interpreted as an implication of clustered α–Fe₂O₃ density, which probably resulted from different nucleation mechanism during the hydrothermal synthesis or probably due to light scattering induced by the TiO₂ underlayers at the FTO/α–Fe₂O₃ interface.


Fig. S3. TEM-EDS mapping results conducted on FTO/TiO $_2$ / α -Fe $_2$ O $_3$ photoanodes annealed at 800°C.

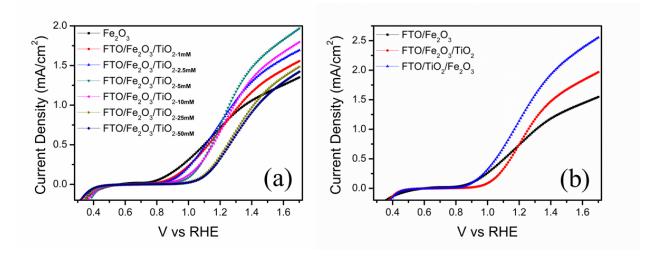

Fig. S4. Photocurrent-potential (J-V) curves for PEC water oxidation reaction of FTO/ α –Fe₂O₃ and FTO/TiO₂/ α –Fe₂O₃ photoanodes annealed at 550°C under standard illumination conditions. Photocurrent was sensitive to the thickness of TiO₂ underlayers. There was a decrease in photocurrent increasing the TiO₂ sol concentration more than 10mM.

Fig. S5. Photocurrent-potential (J-V) curves for PEC water oxidation reaction of FTO/ α – Fe_2O_3 and FTO/ TiO_2/α – Fe_2O_3 photoanodes annealed at 800°C under standard illumination conditions. Photocurrent was sensitive to the thickness of TiO_2 underlayers. There was a decrease in photocurrent and an anodic shift for photoanodes increasing the TiO_2 sol concentration more than 10mM.

Fig. S6. Electrochemical impedance spectra for PEC water oxidation reaction of FTO/ α –Fe₂O₃ and FTO/TiO₂/ α –Fe₂O₃ photoanodes annealed at 800°C under standard illumination conditions. There was a decrease in charge transport resistance with increasing the TiO₂ sol concentration till 10mM. This can be due to reduced charge transport with increasing film thickness of the TiO₂ underlayers.³

Fig. S7. (a) Photocurrent-potential (*J-V*) curves for PEC water oxidation reaction of various Ti concentration for Ti-doped hematite photoanodes annealed at 800°C under illumination (b) Photocurrent-potential (*J-V*) curves for PEC water oxidation reaction of FTO/ α –Fe₂O₃, FTO/ α –Fe₂O₃/TiO₂ and FTO/TiO₂/ α –Fe₂O₃ photoanodes annealed at 800°C under standard illumination conditions.

In order to further investigate the intentional Ti doping effect, we performed an exsitu Ti-doping by dipping the FTO/α–Fe₂O₃ photoanodes in Ti precursor for two minutes and the followed by high temperature sintering to induce Ti⁴⁺ dopants into hematite lattice.⁴ Among various surface treatment conditions, 5 mM of Ti precursor showed highest photocurrent enhancement of 0.87 mA/cm² to that of bare Fe₂O₃ photoanodes (0.77 mA/cm²) at 1.23 V vs RHE. However the observed photocurrent was much lower than FTO/TiO₂/α–Fe₂O₃ photoanodes annealed at 800°C and we observed a positive shift in the onset potential from 0.8 to 1.0 V vs RHE. The obtained shift in onset potential may be due to increased surface states after the surface treatment which limits the water oxidation kinetics.⁵

Reference

- 1. A. Kay, I. Cesar and M. Gratzel, *J Am Chem Soc*, 2006, 128, 15714-15721.
- 2. S. Choudhury, R. Sasikala, V. Saxena, D. K. Aswal and D. Bhattacharya, *Dalton transactions*, 2012, 41, 12090-12095.
- 3. T. Hisatomi, J. Brillet, M. Cornuz, F. Le Formal, N. Tetreault, K. Sivula and M. Gratzel, *Faraday Discuss*, 2012, 155, 223-232.
- 4. R. Franking, L. S. Li, M. A. Lukowski, F. Meng, Y. Z. Tan, R. J. Hamers and S. Jin, *Energ Environ Sci*, 2013, 6, 500-512.
- Y. C. Ling, G. M. Wang, D. A. Wheeler, J. Z. Zhang and Y. Li, *Nano Lett*, 2011, 11, 2119-2125.