Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

A cyanide responsive supramolecular nanovalve based on Pd(II)templated pseudorotaxane

Mandapati V. Ramakrishnam Raju and Hong-Cheu Lin*

Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30049, Taiwan

Contents

1. Small angle XRD of MSNs	S1
2. N ₂ adsorption/desorption isotherms and pore size distribution of MSNs	S1
3. SEM-EDS analysis of nanoparticles SN3s	S2
4. XPS survey scan and elemental photoelectron spectra of SN3s	S2
5. ²⁹ Si, illustration of organic region and ¹³ C CP-MAS NMR of SN3s	
6. FT-IR chromatograms of respective nanoparticles	S4
7. TGA analysis of SN1s, SN3s and SN4s	S4
8. ¹ H NMR stock plot of P1 with different anions	S5
9. HR-TEM image dye loaded and capped nanovalves SN4s	S5
10. UV-Vis and PL changes of dye before and after loading	S6
11. FDS dye release profiles under cyanide with different concentrations	S6
12. Control experiments for FDS dye release under pH stimuli	S6
13. Plausible working principle of SN4s under cyanide trigger	S7
14. Table S1 BET and zeta potential data	S7
15. ¹ H & ¹³ C NMR spectra of compound 3 and P1	S8-S9

Fig. S1 Small angle Powder XRD of mesoporous silica nanoparticles MSNs.

Fig. S2 (a) and (b) N₂ adsorption/desorption isotherms and the corresponding pore size distribution of MSNs.

Fig. S3 SEM-EDX analysis and elemental mapping images of nanoparticles SN3s

Fig. S4 (a) X-ray photo electron spectroscopy survey scan image of nanoparticles **SN3s**; (b)-(f) photoelectron spectra of Si_{2p} , C_{1s} , O_{1s} , N_{1s} & N_{2p} and Pd ($3d_{3/2}$ & $3d_{5/2}$), respectively.

Fig. S5 (a) ²⁹Si CP-MAS NMR spectrum of nanovalve **SN3s**; (b) graphical representation of organic stack functionalized T region and silica Q region; (c) ¹³C CP-MAS NMR spectrum of nanovalve **SN3s**.

Fig. S6 (a) and (b) IR-chromatogram of whole spectral region and carbonyl, N-H bending regions of CTAB templated, isocyanato linked (**SN1s**), organic stack attached (**SN2s**) and closed with gate (**SN3s**) nanoparticles, respectively.

Fig. S7 Thermogravimetric analysis of **SN1s**, **SN3s** and dye loaded nanovalves **SN4s**. The weight losses of **SN1s**, **SN3s** and dye loaded nanovalves **SN4s** from the aforementioned TGA measurements are approximately estimated to be 14.12 %, 19.6 % and 37.60 %, respectively. The corresponding 5.48 % difference in weight losses from bare **SN1s** to gated nanovalves **SN3s** represents the weight loss of pseudorotaxane nanovalves on the surface of **MSNs**, which yields surface density of 0.055 g/g for Pd(II)-templated gate. Likewise, the dye loading capacity (0.180 g/g) is calculated by the weight loss difference between dye loaded nanovalves **SN4s** and **SN3s**.

Fig. S8 Changes in ¹H NMR spectra (a-e) (CDCl₃, 300 MHz, 25°C) of pseudorotaxane **P1** (3 mM) upon the addition of tetrabutylammonium salts of anions F⁻, Cl⁻, N₃⁻ and OAc⁻ (in CD₃OD, 4 equiv), respectively. The assignments correspond to the lettering shown in main Fig. 1b. The asterisk in this Fig corresponds to CDCl₃.

Fig. S9 (a) and (b) HR-TEM micrographs of pore filled Pd(II) metal template gated-nanovalves **SN4s**, enlarged picture in (b) clearly vivifying the guest molecular confinement. Scale bars of (a) and (b) are 200 and 20 nm, respectively.

Fig. S10 (a and b) UV/Vis and PL changes of dye molecule **FDS** before and after loading, respectively; (c) equation utilized for calibrating loading and releasing marvels of **FDS** dye.

Fig. S11 The **FDS** release profiles of MCM-41 mechanized with Pd(II) metal template gated-nanovalves **SN4s** under cyanide trigger at corresponding concentrations of 0, 0.5 and 2 mM, and in the presence of cysteine 5 mM.

Fig. S12 (a) Control experiment using SN3s nanovalves under cyanide stimulus; (b) and c) effect of acidic (pH=2) and basic

(pH=12) on control release from Pd-nanovalves SN4s, respectively.

Fig. S13 Plausible working principle and mechanism of Pd(II)-template gated-nanovalves SN4s under cyanide trigger

Sample	Surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Zeta potential (mV)	Pore diameter (nm)
MSNs	1155	2.11	- 40.7	2.50
SN1s	1099	1.69	- 10.3	
SN2s	824	1.31	- 4.3	2.39
SN3s	588		32.1	
SN4s	232			

Table S1. N2 Adsorption-desorption BET analysis surface area, volume and zeta potential values of nanoparticles

