Supplementary information

Delicate ternary heterostructures achieved by hierarchical co-assembly of Ag and Fe₃O₄ nanoparticles on MoS₂ nanosheets: morphological and compositional synergies on reversible lithium storage

Long Pan,^a Xiao-Dong Zhu,^b Xu-Ming Xie^a and Yi-Tao Liu^a

^aKey Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University,

Beijing 100084, China

^bAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology,

Harbin 150080, China

Figure S1 – FTIR spectra of oleylamine (OA) and Fe_3O_4 @OA NPs. The successful complexation between Fe_3O_4 and the NH₂ group of OA is confirmed, since the peak characteristic of NH₂ stretching disappears, while the CH₂ stretching peak remains in the FTIR spectrum of Fe_3O_4 @OA NPs.

Figure S2 – XRD pattern of Fe₃O₄@OA NPs showing well-resolved peaks (111, 220, 311, 222, 400, 331, 422, 511, 440 and 533) of spinel Fe₃O₄ (JCPDS card No. 19–0629).

Figure S3 – TGA curve of Fe₃O₄@OA NPs showing 18.9 wt% OA content.

Figure S4 – FTIR spectra of octadecylamine (ODA) and Ag@ODA NPs. The successful complexation between Ag and the NH₂ group of ODA is confirmed, since the peak characteristic of NH₂ stretching disappears, while the CH₂ stretching peak remains in the FTIR spectrum of Ag@ODA NPs.

Figure S5 – XRD pattern of Ag@ODA NPs showing well-resolved peaks (111, 200, 220 and 311) of facecentered cubic (fcc) Ag (JCPDS card No. 87–0720).

Figure S6 – TGA curve of Ag@ODA NPs showing 11.3 wt% ODA content.

Figure S7 – HRTEM image of Fe_3O_4 –MoS₂ binary heterostructures.

Figure S8 – TEM images of Fe_3O_4 –MoS₂ binary heterostructures at a wt ratio of (a) 2:10, (b) 5:10 and (c) 8:10.

Figure S9 – TEM images showing the results of an interesting control experiment, in which the Fe₃O₄@OA NPs are tried to be assembled on the MoS₂ nanosheets (5:10) in a mixture of NMP and THF at a vol ratio of (a) 95:5, (b) 90:10 and (c) 50:50. It is apparent that the higher the THF fraction, the more successful the NP adhesion. When the THF fraction is only 5%, the NP adhesion is prohibited due to the adequate solvation of MoS₂ nanosheets that minimizes the surface energy. At a slightly elevated THF fraction, the NPs sparsely adhere to the MoS₂ surfaces. When the THF fraction is high enough (50%), uniform and dense decoration of the MoS₂ nanosheets with the NPs can be achieved.

Figure S10 - HRTEM image of Ag-MoS₂ binary heterostructures.

Figure S11 – Photographs of a THF solution of Ag/Fe_3O_4 –MoS₂ ternary heterostructures (a) before and (b) after magnetic attraction.

Figure S12 – Raman spectra of neat MoS₂ nanosheets and Ag/Fe₃O₄–MoS₂ ternary heterostructures. Insert: Raman spectrum of Fe₃O₄@OA NPs. Seen from the figure, the two characteristic peaks of MoS₂ at 381 and 408 cm⁻¹, corresponding to the in-plane E_{2g} and out-of-plane A_{1g} vibrations, can be easily recognized. It is found, interestingly, that the Raman intensity of Ag/Fe₃O₄–MoS₂ ternary heterostructures increases significantly compared to that of neat MoS₂ nanosheets, confirming the surface-enhanced Raman scattering (SERS) effect of Ag present in the ternary heterostructures. Note that the Raman signals of Fe_3O_4 @OA NPs are absent in the Ag/Fe₃O₄–MoS₂ ternary heterostructures due to the much weaker Raman intensity of Fe_3O_4 than MoS₂.

	Fe (wt%)	Ag (wt%)	Ag@ODA (wt%)	Fe ₃ O ₄ @OA (wt%)	MoS ₂ (wt%)
Actual ratio	17.52	5.86	6.61	29.89	63.50 ^{a)}
Starting ratio	-	-	6.25	31.25	62.50

 $\label{eq:stable} \textbf{Table S1} - \text{Elemental composition of } Ag/Fe_3O_4 - MoS_2 \text{ ternary heterostructures}.$

 $^{a)}Note that \ MoS_2$ cannot be completely dissolved in concentrated $\mathrm{H}_2\mathrm{SO}_4$ at ambient temperature, so its

accurate composition is calculated by subtracting those of Ag@ODA and Fe₃O₄@OA NPs from 100 wt%.

Figure S13 – A comparison among the first three CV curves of neat MoS_2 , Fe_3O_4 and Ag/Fe_3O_4 – MoS_2 ternary heterostructures. As seen from the CV curves of Ag/Fe_3O_4 – MoS_2 ternary heterostructures, the reduction peaks at 1.57 and 0.90 V in the first cathodic scan originate from the formation of $Li_xFe_3O_4$ and Li_xMoS_2 due to Li^+ ion intercalation. The reduction peak at 0.53 V corresponds to the conversion reaction of Fe^{3+} and Fe^{2+} to Fe^{0} . The strong reduction peak at 0.34 V is related to the kinetically activated electrolyte degradation and the conversion reaction, in which Mo^{4+} is reduced to Mo^{0} . In the subsequent sweeps, the

obvious peak at 0.34 V becomes inconspicuous, indicating that the SEI layer has been built perfectly. The other three reduction peaks are positively shifted in the second and third cathodic sweeps due to the structural modification after the first cycle.¹ The reduction peaks at 0.72, 1.10 and 1.64 V are attributed to the following three reactions: $\text{Li}_x\text{Fe}_3\text{O}_4 + (8-x)\text{Li}^+ + (8-x)\text{e}^- \rightarrow 3\text{Fe} + 4\text{Li}_2\text{O}$, $\text{MoS}_2 + x\text{Li}^+ + x\text{e}^- \rightarrow \text{Li}_x\text{MoS}_2$, and $\text{Fe}_3\text{O}_4 + x\text{Li}^+ + x\text{e}^- \rightarrow \text{Li}_x\text{Fe}_3\text{O}_4$, respectively. During the second cathodic scan, a new reduction peak at ~1.90 V arises, which is related to the reaction of Mo + 4Li^+ + 2S + 4e^- $\rightarrow 2\text{Li}_2\text{S} + \text{Mo}$. In the anodic scan, the reverse oxidation peak at 2.32 V corresponds to the conversion of S²⁻ to S^{0,2} However, the broad oxidation peak at 1.54–1.86 V is the overlapping of two oxidation peaks, which stand for the partial oxidation of Mo to MoS₂ and the oxidation of Fe to Fe₃O₄. From the second anodic and cathodic scans, both the peak current and the integrated area intensity are nearly unchanged, indicating there is a very tiny capacity loss during charging. The CV measurements therefore confirm the good electrochemical activity and stability of the Ag/Fe₃O₄–MoS₂ anode.

- [1] T. Yoon, C. Chae, Y.-K. Sun, X. Zhao, H. H. Kung and J. K. Lee, J. Mater. Chem., 2011, 21, 17325.
- [2] L. Pan, Y.-T. Liu, X.-M. Xie and X.-D. Zhu, Chem. Asian J., 2014, 9, 1519.

Figure S14 – Cycle behavior of Fe_3O_4 –MoS₂ binary heterostructures at a current density of 200 mA g⁻¹.

Figure S15 – A comparison among the rate capabilities of our Ag/Fe_3O_4 –MoS₂ anode and various Fe_3O_4 or MoS₂ anodes previously reported.

- [1] Y. Chen, H. Xia, L. Lu and J. Xue, J. Mater. Chem., 2012, 22, 5006.
- [2] W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng and K. Müllen, Adv. Mater., 2013, 25, 2909.
- [3] T. Yoon, C. Chae, Y.-K. Sun, X. Zhao, H. H. Kung and J. K. Lee, J. Mater. Chem., 2011, 21, 17325.
- [4] C. He, S. Wu, N. Zhao, C. Shi, E. Liu and J. Li, ACS Nano, 2013, 7, 4459.
- [5] S. Saadat, J. Zhu, D. H. Sim, H. H. Hng, R. Yazami and Q. Yan, J. Mater. Chem. A, 2013, 1, 8672.
- [6] B. Jang, M. Park, O. B. Chae, S. Park, Y. Kim, S. M. Oh, Y. Piao and T. Hyeon, *J. Am. Chem. Soc.*, 2012, 134, 15010.
- [7] C. Lei, F. Han, D. Li, W.-C. Li, Q. Sun, X.-Q. Zhang and A.-H. Lu, Nanoscale, 2013, 5, 1168.

- [8] T. Yoon, J. Kim, J. Kim and J. K. Lee, *Energies*, 2013, 6, 4830.
- [9] J. Ming, J.-B. Park and Y.-K. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 2133.
- [10] J. E. Lee, S.-H. Yu, D. J. Lee, D.-C. Lee, S. I. Han, Y.-E. Sung and T. Hyeon, *Energy Environ. Sci.*, 2012, 5, 9528.
- [11]S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao and L. Ling, *J. Power Sources*, 2011, **196**, 3887.
- [12]Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen and G. Han, J. Mater. Chem., 2012, 22, 20566.
- [13] R. Wang, C. Xu, J. Sun, L. Gao and C. Lin, J. Mater. Chem. A, 2013, 1, 1794.
- [14] D. Chen, G. Ji, Y. Ma, J. Y. Lee and J. Lu, ACS Appl. Mater. Interfaces, 2011, 3, 3078.
- [15] L. Lang and Z. Xu, ACS Appl. Mater. Interfaces, 2013, 5, 1698.
- [16]S. H. Lee, S.-H. Yu, J. E. Lee, A. Jin, D. J. Lee, N. Lee, H. Jo, K. Shin, T.-Y. Ahn, Y.-W. Kim, H. Choe,Y.-E. Sung and T. Hyeon, *Nano Lett.*, 2013, 13, 4249.
- [17] B. Wang, H. B. Wu, L. Zhang and X. W. Lou, Angew. Chem. Int. Ed., 2013, 52, 4165.
- [18] Y. Chen, B. H. Song, L. Lu and J. M. Xue, Mater. Technol., 2013, 28, 254.
- [19]Q. Q. Xiong, J. P. Tu, Y. Lu, J. Chen, Y. X. Yu, Y. Q. Qiao, X. L. Wang and C. D. Gu, J. Phys. Chem. C, 2012, 116, 6495.
- [20] S. Wu, Z. Wang, C. He, N. Zhao, C. Shi, E. Liu and J. Li, J. Mater. Chem. A, 2013, 1, 11011.
- [21] J. Luo, J. Liu, Z. Zeng, C. F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen and H. J. Fan, *Nano Lett.*, 2013, 13, 6136.
- [22] Y. Su, S. Li, D. Wu, F. Zhang, H. Liang, P. Gao, C. Cheng and X. Feng, ACS Nano, 2012, 6, 8349.
- [23] Y. Gong, S. Yang, Z. Liu, L. Ma, R. Vajtai and P. M. Ajayan, Adv. Mater., 2013, 25, 3979.
- [24]Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen and J. Y. Lee, *J. Mater. Chem. A*, 2013, 1, 2202.

- [25] K. Chang and W. Chen, ACS Nano, 2011, 5, 4720.
- [26] V. H. Phama, K. H. Kim, D. W. Jung, K. Singh, E. S. Oh and J. S. Chung, *J. Power Sources*, 2013, 244, 280.
- [27] X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong and H. Zhang, Small, 2013, 9, 3433.
- [28]K. Chang and W. Chen, J. Mater. Chem., 2011, 21, 17175.
- [29] X. Zhou, L.-J. Wan and Y.-G. Guo, Chem. Commun., 2013, 49, 1838.
- [30]H. Yu, C. Ma, B. Ge, Y. Chen, Z. Xu, C. Zhu, C. Li, Q. Ouyang, P. Gao, J. Li, C. Sun, L. Qi, Y. Wang and F. Li, *Chem. Eur. J.*, 2013, **19**, 5818.
- [31]K. Chang, D. Geng, X. Li, J. Yang, Y. Tang, M. Cai, R. Li and X. Sun, *Adv. Energy Mater.*, 2013, 3, 839.
- [32] S. Ding, D. Zhang, J. S. Chen and X. W. Lou, Nanoscale, 2012, 4, 95.
- [33] C. Zhang, Z. Wang, Z. Guo and X. W. Lou, ACS Appl. Mater. Interfaces, 2012, 4, 3765.