Supporting Information

Preparation of Metal Halide Perovskite Solar cells through Liquid Droplet Assisted method

Karunakara Moorthy Boopathi^{a,b,c}, Mohan Ramesh^c, Packiyaraj Perumal^d, Yu-Ching Huang^e, Cheng-Si Tsao^e, Yang-Fang Chen^d, Chih-Hao Lee^a, Chih-Wei Chu^{c,*}

^aDepartment of Engineering and Systems Science, National Tsing Hua University, Hsinchu 30013, Taiwan

^bNano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University

^cResearch Center for Applied Science, Academia Sinica, Taipei 115, Taiwan

^d Department of Physics, National Taiwan University, Taipei 10617, Taiwan

^e Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan

*e-mail: gchu@gate.sinica.edu.tw

http://www.rcas.sinica.edu.tw/faculty/gchu.html

Fig. S1 (a) Schematic device structure of lead iodide perovskite solar cell, (b) corresponding energy band diagram for each layer present in the device structure.

Fig. S2 SEM image of (a) one step mixed solution (CH₃NH₃I:PbI₂ (1:0.75) molar ratio) and (b) spin (PbI₂) / spin (CH₃NH₃I) on PEDOT:PSS. Scale corresponds to 2 μ m (Insert scale bar represent 500 nm).

Fig. S3 J-V characteristic of spin (PbI₂) / spray (CH₃NH₃I), spin (PbI₂) / spin (CH₃NH₃I) and one step mixed solution (CH₃NH₃I:PbI₂ (1:0.75) molar ratio) spin coating with same device structure shown in fig. S1

Table S1. Devi	ice performance	parameters of	different	perovskite f	ilm formation	techniques
	lee periormanee	purumeters of	uniterent	perovolute 1	initi iorination	teeningues

Different film	$V_{OC}(V)$	J_{SC} (mA/cm ²)	η (%)	FF (%)
formation techniques				
spin (PbI2) / spray	0.91	21.06	11.66	60.84
(CH ₃ NH ₃ I)				
spin (PbI2) / spin	0.94	17.73	10.96	65.76
(CH ₃ NH ₃ I)				
one step spin coating	0.86	15.81	7.96	58.54

Table S2. Device performance parameter of different thickness of 40 wt% PbI_2 layer and different volumes of 3 wt% CH_3NH_3I

PbI ₂ (40 wt %)	CH ₃ NH ₃ I (3	Voc (V)	Jsc	η (%)	FF (%)
Spin speed	wt%) volume		(mA/cm ²)		
135 <u>+</u> 5 nm (4000 rpm)	300 ul	0.89	16.19	8.36	58.02
	400 ul	0.92	17.25	9.70	61.12
	500 ul	0.89	10.55	5.21	55.49
110 <u>+</u> 5 nm	300 ul	0.91	17.65	8.72	54.29
(5000 rpm)	350 ul	0.93	18.51	10.16	59.02
	400 ul	0.91	17.64	9.25	57.56
	450 ul	0.91	16.22	8.07	54.47
100 <u>+</u> 5 nm (6000 rpm)	200 ul	0.87	16.45	7.97	55.69
	250 ul	0.89	18.03	9.37	58.39
	300 ul	0.91	20.84	11.12	58.64
	350 ul	0.91	18.59	10.38	61.36
90 <u>+</u> 5 nm	200 ul	0.94	19.44	10.72	58.66
(7000 rpm)	300 ul	0.96	17.24	9.95	60.12
	350 ul	0.91	16.75	8.83	57.93
	400 ul	0.92	16.07	8.61	58.23
80 <u>+</u> 5 nm	200 ul	0.89	18.03	9.37	58.39
(8000 rpm)	300 ul	0.91	17.04	8.81	57.46
	350 ul	0.90	16.74	8.13	53.96

Fig. S4 J-V characteristics of device with perovskite thickness of 220 \pm 5 nm while varying the PC₆₁BM thickness

Table	S3.	Device	performance	parameters	of	220	±5	nm	perovskite	film	with	different
thickn	ess c	of $PC_{61}B$	M layer									

PCBM thickness (spin speed in rpm)	Voc (V)	Jsc (mA/cm ²)	η (%)	FF (%)
130 nm (1k)	0.93	16.82	8.63	55.17
95 nm (4k)	0.92	18.39	9.31	55.03
90 nm (5k)	0.91	20.86	11.12	58.58
85 nm (6k)	0.91	20.12	11.55	63.08
75 nm (8k)	0.91	19.43	10.91	61.70