Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

PANI/graphene nanocomposite films with high thermoelectric properties by the enhanced molecular ordering

Liming Wang, ac Qin Yao, a* Hui Bi, a Fuqiang Huang, a Qun Wang, and Lidong Chen bd*

^aCAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

^bState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

^dShanghai Institute of Materials Genome, Shanghai, China

* Email: yaoqin@mail.sic.ac.cn and cld@mail.sic.ac.cn

	Electrical	Seebeck	Power
Sample	Conductivity	Coefficient	Factor
	(S cm ⁻¹)	(µV K ⁻¹)	(µW m ⁻¹ K ⁻²)
	(14	22	20

 Table S1
 TE properties of PANI/GP-P composite film containing 62 wt% graphene.

Fig. S1 SEM images of freezed-fractured across sections for PANI/GP-P composite film containing 62 wt% graphene. The distribution of graphene in the PANI/GP-P composite film became disorganized.