Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Branched hierarchical photoanode of anatase TiO_2 nanotubes on rutile TiO_2 nanorod arrays for efficient quantum dot-sensitized solar cells

Bingkun Liu,^a Yanjun Sun,^a Xuesong Wang,*b Lijing Zhang,^a Dejun Wang,^{a,c} Zewen Fu,^a Yanhong Lin,^a and Tengfeng Xie*a

- ^a State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
- ^b Huanghe Hydropower Photovoltaic Industry Technology Co.,Ltd, Xi'an 710000, People's Republic of China.
- ^c Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.

^{*}Corresponding author: xietf@jlu.edu.cn and cpiwxs@126.com.

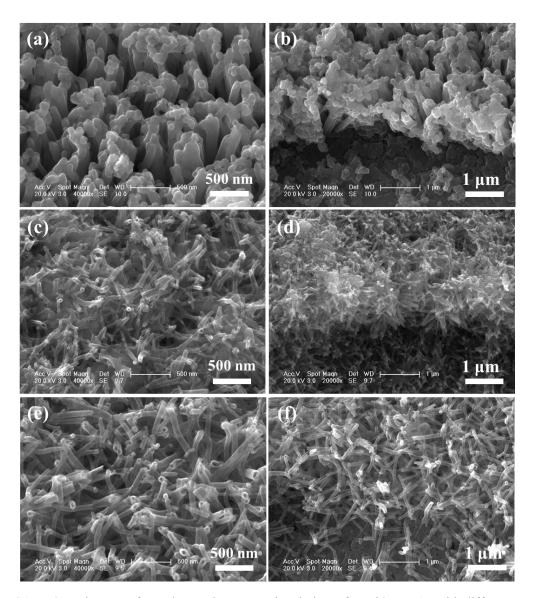


Fig. S1. FESEM images of top view and cross-sectional view of H-TiO $_2$ NRAs with different hydrothermal growth of ZnO nanorod templates for 1 h (a,b), 4 h (c,d) and 6 h (e,f).

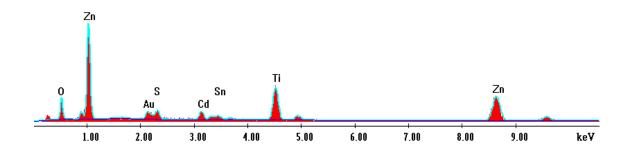


Fig. S2. EDX spectrum of CdS QD-sensitized branched ZnO/TiO₂ NRAs.

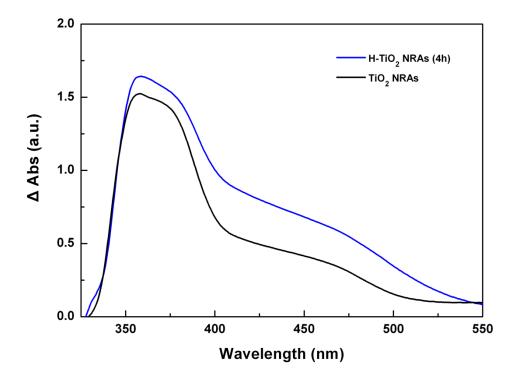
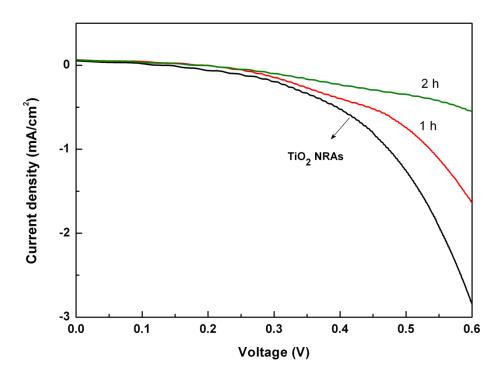



Fig. S3. The optical absorbance of CdS QDs at different electrodes.

By subtracting the electrode effect from QDs-sensitized TiO_2 samples (From Figure 4 in main manuscript), we can deduce the optical absorbance value of only CdS QDs (Δ Abs). From Figure S3, high absorbance value has been observed at H-TiO₂ NRAs, which indicates that higher loading of QDs in this electrode compare to TiO_2 NR electrode.

Fig. S4. Dark current-voltage curves of QDSCs assembled with TiO₂ NRAs and H-TiO₂ NRAs with various time.

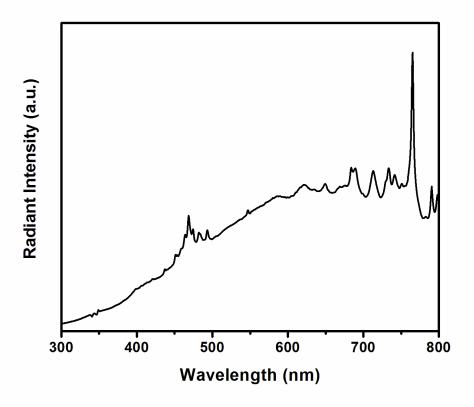


Fig. S5. The spectrum of Xe lamp used in our experiments.