Supporting Information

Synthesis of TiO₂ decorated Co₃O₄ acicular nanowire arrays and its application as an ethanol sensor

Liqiang Zhang,^{1,2} Zhenfei Gao,^{1,2} Chao Liu,¹ Yunhan Zhang,¹ Zhiqiang Tu,¹ Xiaopeng Yang,³ Fan Yang,¹ Zhen Wen,⁴ Liping Zhu,⁴ Rui Liu,⁵ Yongfeng Li,^{1*} and Lishan Cui^{1,2*}

- ¹State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
- ²Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China.
- ³School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
- ⁴State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- ⁵State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Phone/Fax:+86-010-89739028. E-mail: yfli@cup.edu.cn; lishancui63@126.com

Figure S1. SEM image of cobalt-precursor nanostructure growing on the Al₂O₃ substrate at different hydrothermal temperature: (a) 85 °C; (b) 95 °C; (c) 125 °C; (d) 145 °C.

Figure S2. The optical micrographs of the Al_2O_3 substrates, the as-synthesized precursor, pristine Co_3O_4 and TiO_2/Co_3O_4 NW arrays.

Figure S3. N_2 adsorption/desorption isotherm curve of the acicular-like TiO₂/Co₃O₄ NWs and porous volume distribution of the pore size.

Figure S4. XRD patterns and SEM images of: Co₃O₄ nanowire with an acicular-like structure grown on the polycrystal Al₂O₃ plate, Ti foil and Cu foil, respectively.

In this study, we found that the Co_3O_4 nanowire grown on the titanium foil or copper foil substrate can also form an acicular-like structure, which are shown in Figure S4. At the beginning, the Co^{2+} ions interact with F⁻ ions to form CoF^+ complexes. And then, the carbonate anions originated from the Urea reacts with CoF^+ to form $Co(CO_3)_{0.5}$ (OH)0.11H₂O crystals. There are plenty of functional groups exist on the surface of the supporting substrates containing chemical defects, hydroxyl and carboxyl or carbonyl groups, which are beneficial to heterogeneous nucleation. With the assistance of hydrogen bonding, the dangling functional groups act as anchor sites to capture $Co(CO_3)_{0.5}(OH)0.11H_2O$ crystal seeds and make the as-formed crystal seeds stick firmly to the supporting substrate. These crystals agglomerate into $Co(CO_3)_{0.5}(OH)0.11H_2O$ crystalline particles on the surface, and naturally form into acicular like NR arrays. The acicular structure is greatly influenced by the chemicals and respective processes during the hydrothermal reaction. Thus in this study, we can select Ti foil as the substrate for collecting more powders for the BET characterization, which has been applied in our previous studies. (Wen et al. J. Mater. Chem. A, 2013, 1, 7511).

Figure S5. (a) CGS-1TP intelligent gas sensing analysis system. (b) A photograph of the control platform of the gas sensing analysis system.

In the experiment, the gas-sensing measurements were performed on an intelligent gas sensing analysis system (CGS-1TP, Beijing Elite Tech Co., Ltd, China), shown in Fig. R2. The saturated target gas was injected into the test chamber (18 L in volume) by a microinjector through a rubber plug. The resistance of sensors is collected and analyzed by the system in real time. The volume of the ethanol can be calculated by the following formula:

Q=(V×C×M)/ (22.4×d× ρ)×10⁻⁹×(273+T_R)/(273+T_B)

Q—Liquid Volume (mL)	V—Test Chamber Volume (mL)
M—Molecular Weight (g)	ρ—Liquid Purity
C—Gas Concentration (ppm)	d—Liquid Density(g/cm ³)
T_{R} —Environment Temperature	(°C) T_B —Testing Temperature (°C)

This gas-sensing test method, so-called Static Volumetric Method, is widely used by many researchers. On the other hand, the analysis system offered an external temperature control (from room temperature to 500°C), which could conductively adjust the sensor temperature with a precision of 1°C

Figure S6. The I-V characteristics of TiO_2/Co_3O_4 sample between the two neighboring electrode.

Figure S7. The energy band structure diagram for the pristine Co_3O_4 and TiO_2/Co_3O_4 . (a) The pristine state. (b) Exposed in the ethanol.

The superiority of p-n junction sensor than conventional chemi-resistive sensor:

Fig. S7 described the energy band structure diagram for the Co_3O_4 and TiO_2/Co_3O_4 heterojunction in the pristine state. As a p-type semiconductor, the resistance of Co_3O_4 is based on the concentration of the hole. For the TiO_2/Co_3O_4 , the holes in p-type Co_3O_4 and the electrons in n-type TiO_2 generate a self-built electric field, which could establish a depletion layer until they get an equalization of the Fermi level. The heterojunction region of TiO_2/Co_3O_4 is believed to easily attract reductive and oxidative gases. When exposed in the air (1), the hole density on the surface of Co_3O_4 increases while the electrons on the surface of TiO_2 decrease due to the ionization of absorbed oxygen species, during which, the holes can easily transfer to p-type Co₃O₄ semiconductor, leading to a lower resistance of the sensor.

 $1/2 O_2(g) \rightarrow O^-(ads) + h^*$ (1)

As shown in Fig. R1(b), when ethanol was introduced into the chamber, the new generated free electrons from the reaction (2) would neutralize the holes in the Co₃O₄. As a consquence, its resistance would demonstrate an increase. The resistance transient is applied to reflect its gas response. For the TiO₂/Co₃O₄, the charged carrier accumulation layer near the surface is thinned by the electrochemical interaction between O⁻(ads) and C₂H₅OH molecules (2), which releases free electrons and neutralizes the holes in the Co₃O₄. However, the electrons transfer from n-type semiconductor to the p-type semiconductor are impeded at this moment, which makes the resistance of the device increases more rapidly. As a consequence, the TiO₂/Co₃O₄ demonstrates a higher gas sensitivity than the pristine Co₃O₄. The reaction process can be described as follows:

 $C_2H_5OH(g) + 6 O^{-}(ads) \rightarrow 2CO_2(g) + 3H_2O(g) + 6e^{-}$ (2)

As shown in the schematic diagram, it is supposed that there exists only four holes in the pristine Co₃O₄, two of them are neutralized when ethanol is introduced, and its response would be two. As a p-type semiconductor, the resistance is significantly influenced by the hole density, where $R_i \propto 1/N_i$, $R_f \propto 1/N_f$ (R_i and N_i represent the initial resistance and the initial number of holes in Co₃O₄; R_f and N_f represent the resistance and the number of left holes in Co_3O_4 after neutralization). Thus, the resistance of Co_3O_4 can be calculated as R_f/R_i = $N_i/N_f=4/2=2$. While for the TiO₂/Co₃O₄, the holes in p-type semiconductor Co₃O₄ and the electrons in n-type semiconductor TiO₂ form a self-built electric field, which could establish a depletion layer until they get an equalization of the Fermi level. It would attract six holes in the Co_3O_4 region in the initial state. In addition, the heterojunction region of TiO_2/Co_3O_4 is believed to easily attract reductive and oxidative gases. When ethanol is introduced, four holes would be neutralized and two are left in Co₃O₄ region, as a result, it demonstrates a response of three ($R_{f}/R_{i} = N_{i}/N_{f} = 6/2 = 3$), which is larger than that of the Co₃O₄. The superiority of p-n junction sensor than conventional chemi-resistive sensors has been widely confirmed in the sensors such as n-Fe₃O₄/p-Co₃O₄ (Qu et al, Sens. Actuators B Chem., 2010, 148, 478-485.), and n-ZnO/p-Co₃O₄ (D. Bekermann, et al., ACS Appl. Mater. Interfaces, 2012, 4, 928-934.).

Figure S8. The gas responses of TiO_2/Co_3O_4 sensor to a series content of TiO_2 .

Figure S9. The maximum gas responses of the TiO_2/Co_3O_4 and Co_3O_4 sensor to a series concentration of ethanol at 160 °C.

Figure S10. The responses of the TiO_2/Co_3O_4 sensor to several gases with concentration of 100 ppm at 160 °C.

The formation process of the TiO₂/Co₃O₄ acicular NW arrays:

The chemicals and the respective processes greatly influence the morphology of the final products. In this study, Urea can release ammonia at a low hydrolysis rate, which provides carbonate anions simultaneously during the hydrolysis. Carbonate anions can be gradually intercalated into the interlayers by replacing F^- and OH^- anions due to the strong affinity to Co^{2+} . The anion exchange process is kinetically driven and induced a dissolution-recrystallization in which carbonate anions act as a structure-directing agent, producing acicular-like cobalt hydroxide carbonate. (Xie et al. *J. Phys. Chem. C* 2010, 114, 2116, Xu et al. *J. Phys. Chem. B* 2003, 107, 12643). We have added the related discussion in the revised manuscript.

In the presence of NH₄F, Co²⁺ ions form complexes with F⁻:

$$Co^{2+} + F^{-} \rightarrow CoF^{+}$$

When using urea as a hydrolysis reagent, cobalt hydroxide carbonate forms:

 $\mathrm{CO}(\mathrm{NH}_2)_2 + \mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{NH}_3 + \mathrm{CO}_2$

 $CO_2 + H_2O \rightarrow CO_3^{2-} + 2OH^{-}$

 $CoF^++OH^- + 0.5CO_3^{2-}+0.11H_2O \rightarrow Co(CO_3)_{0.5} (OH)0.11H_2O+F^-$

After the treatment:

 $Co(CO_3)_{0.5}$ (OH) $0.11H_2O+13/6O_2 \rightarrow 4/3Co_3O_4+0.5CO_2+0.61H_2O$