Supplementary information:

N-type thermoelectric materials based on CuTCNQ

nanocrystals and CuTCNQ nanorod arrays

Yuanhui Sun,^{a,b} Fengjiao Zhang,^{a,b} Yimeng Sun,^a Chong'an Di,^{*a} Wei Xu,^{*a} and Daoben Zhu^{*a}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. ^b University of Chinese Academy of Sciences, Beijing, 100049, China.

Figure S1. XRD patterns for a) CuTCNQ phase I needles, b) CuTCNQ phase II platelets and CuTCNQ- F_4 TCNQ blends (c) B1-CuTCNQ, (d) B2-CuTCNQ, (e) B3-CuTCNQ and (f) B4-CuTCNQ.

Figure S2. X-Ray photoelectron spectra of CuTCNQ blends a) with 0.97% F_4TCNQ ratio (B1-CuTCNQ), b) with 2.98% F_4TCNQ ratio (B2-CuTCNQ); c) with 3.2% F_4TCNQ ratio (B3-CuTCNQ) and d) with 6.59% F_4TCNQ ratio (B4-CuTCNQ). (Inset: F 1s peak spectra).

Figure S3. (Color online) Temperature dependence of a) Seebeck coefficient, b) electrical conductivity and c) power factors of NC-CuTCNQ and CuTCNQ blends with a series of F_4TCNQ concentration (mol %).

Figure S4. The SEM image of NrA-CuTCNQ films prepared in situ on 30 nm copper film.

Figure S5. The resistance in the direction of the nanorods versus thickness of NrA-CuTCNQ films.