Electronic Supplementary Information

Fig. 1S Nitrogen adsorption-desorption isotherm and pore size distribution (inset) of $Bt/Bc/\alpha$ -Fe₂O₃

Figure 2S shows the FTIR spectra of Bt, rosin and Bt/Bc/ α -Fe₂O₃ between 4000 and 400 cm⁻¹. The spectrum of Bt consisted of the bands at 3650, 3420, 1037, 790, 520 and 467 cm⁻¹. The band at 3650 cm⁻¹ was O-H stretching vibrations of Si-OH groups. The broad band centered near 3420 cm⁻¹ represented -OH vibration band of silicate skeleton. The peak at 1037 cm⁻¹ corresponded to Si-O-Si groups of the tetrahedral sheets, and bands at 790, 520, and 467 cm⁻¹ were due to the deformation and bending modes of the Si-O bond.¹ Some typical peaks of rosin at 3430, 2936 and 1697 cm⁻¹ were assigned to O-H stretch in COOH, C-H stretch in pyranoid ring and C=O stretch in COOH, respectively.² After the pyrolysis reaction, the identical peaks of rosin at near 3430, 2936 and 1697 cm⁻¹ got weak or even disappeared in Bt/Bc/ α -Fe₂O₃ because of biochar generation from the pyrolysis of rosin at high temperature. The peaks of Bt had a similar result as rosin occurring in Bt/Bc/ α -Fe₂O₃ at 556 and 470 cm⁻¹ could be attributed to the Fe-O stretching vibration in α -Fe₂O₃.^{3, 4} Furthermore, the bands at 3393 and 1630 cm⁻¹ in Bt/Bc/ α -Fe₂O₃ could correspond the stretching vibration and bending vibration of surface OH groups in α -Fe₂O₃.⁴ The FTIR results indicate the pyrolysis of rosin into biochar, Bt being coated as substrate, and the production of Fe₂O₃ during the preparation of Bt/Bc/ α -Fe₂O₃.

Fig. 2S FTIR spectra of Bt, rosin, and $Bt/Bc/\alpha$ -Fe₂O₃.

Fig. 3S Variation of $Bt/Bc/\alpha$ -Fe₂O₃ suspension pH after immersing into aqueous solution with different pH. (adsorbent dosage: 0.8 g L⁻¹, shaking speed: 100 rpm, contact time: 30 min, T: 25 °C)

Fig. 4S Effect of Na⁺ and Cl⁻¹ on the removal of Cr (VI) by Bt/Bc/ α -Fe₂O₃. (adsorbent dosage: 0.8 g L⁻¹, Cr(VI) concentration: 50 mg L⁻¹, shaking speed: 100 rpm, contact time: 30 min, T: 25 °C)

References

- T. S. Anirudhan, P. S. Suchithra and S. Rijith, Colloids and Surf., A: Physicochem. Eng. Aspects, 2008, 326, 147-156.
- 2 M. M. Abeer, M. C. Amin, A. M. Lazim, M. Pandey and C. Martin, *Carbohydr. Polym.*, 2014, **110**, 505-512.
- 3 G. K. Pradhan and K. M. Parida, ACS Appl. Mater. Interfaces, 2011, 3, 317-323.
- 4 F. Wang, X. F. Qin, Y. F. Meng, Z. L. Guo, L. X. Yang and Y. F. Ming, *Mater. Sci. Semicond. Process.*, 2013, 16, 802-806.