Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Free-standing Carbon Nanofiber Interlayer for High-performance Lithium-Sulfur Batteries

Richa Singhal,^{#,a} Sheng-Heng Chung,^{#,b} Arumugam Manthiram,^{*,b} and Vibha Kalra^{*,a}

^aDepartment of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA

^bElectrochemical Energy Laboratory & Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, USA

#Equal Contribution

*Corresponding Authors: vk99@drexel.edu (V. Kalra), rmanth@mail.utexas.edu (A. Manthiram)

Fig. S1. Porosity measurements of NPCNF, ACNF, and MCNF nanofibers: (a) nitrogen sorption isotherms, (b) pore size distribution with Horvath-Kawazoe (HK) and density functional theory (DFT) method, (c) pore size distribution with Barrett-Joyer-Halenda (BJH) method.

Fig. S2. Deconvoluted C1s XPS peaks for NPCNF, ACNF, and MCNF interlayers.

Fig. S3. Deconvoluted N1s XPS peaks for NPCNF, ACNF, and MCNF interlayers.

Fig. S4. SEM and EDS mapping of (a,c,e) surface and (b, d, f) cross-section of NPCNF, ACNF, and MCNF interlayers after 100 discharge cycles showing uniform distribution of sulfur throughout the nanofiber matrix.

Fig. S5. Control testing on the interlayers alone at the same current density as the complete Li-S cell (with interlayer) and comparison with Li-S cells with interlayers showing the negligible contribution of the capacity from carbon nanofiber interlayer.