Electronic Supporting Information

for

Magnetic Cobalt-Graphene Nanocomposite derived from Self-

Assembly of MOFs with Graphene Oxide as an Activator for

Peroxymonosulfate

Kun-Yi Andrew Lin*, Fu-Kong Hsu, and Wei-Der Lee

^aDepartment of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan, R.O.C.

*Corresponding Author. Tel: +886-4-22854709, E-mail address: linky@nchu.edu.tw

(Kun-Yi Andrew Lin)

Fig. S1. XRD patterns of the conventional ZIF-67 and the as-prepared ZIF-67/GO composite

Fig. S2. TG curves of ZIF-67 in $N_{\rm 2}$ and cZIF-67 in air.

Fig. S3. Chemical structure of Acid yellow 17

Fig. S4. Degradation of AY by PMS activated using MCG: (a) AY solution (50 mg L⁻¹) with PMS (90 mg L⁻¹); (b) MCG (500 mg L⁻¹) was added to the AY solution with PMS (c) the resulting mixture after 30-min shaking. The solution becomes clear and MCG can be drawn by a magnet (on the left in (c)).

Fig. S5. TOC removal during the decolorization of AY activated by MCG at 25 °C (AY solution = 100 mg L^{-1} ; PMS = 90 mg L^{-1} ; MCG = 500 mg L^{-1}).

Fig. S6. Cobalt ion leached out from MCG: (a) dissolution of Co ion as a function of time during the decolorization of AY and (b) homogenous activation of PMS by the dissolved Co^{2+} (AY solution = 100 mg L⁻¹; PMS = 90 mg L⁻¹; MCG = 500 mg L⁻¹, the dissolved Co^{2+} = 0.71 mg L⁻¹).

Fig. S7. Effect of carbonization temperature of MCG preparation on the degradation of AY at 25 °C (AY solution = 100 mg L^{-1} ; PMS = 90 mg L^{-1} ; MCG = 500 mg L^{-1}).

Fig. S8. Arrhenius plot of AY decolorization using PMS activated by MCG.

Fig. S9. pH variation during the decolorization of AY using PMS activated by MCG at 25 °C (AY solution = 100 mg L^{-1} ; PMS = 90 mg L^{-1} ; MCG = 500 mg L^{-1}).

Fig. S10. Stability of MCG for the decolorization of AY at 25 °C (AY solution = 100 mg L^{-1} ; PMS = 90 mg L^{-1} ; MCG = 500 mg L^{-1}).

Fig. S11. XPS spectrum of the pristine MCG and the spent MCG recovered from the long-term cyclic decolorization test.

Fig. S12. Raman spectra of the pristine MCG and the MCG recovered from the long-term cyclic decolorization test.

Table S1. Comparisons of MCG with other metal oxides/graphene composites as the PMS activator for degradation of organic pollutants.

Composite name	Fraction of Metal oxides in the composite ^a		Conc. of pollutants (mg L ⁻¹)		Conc. of PMS (mg L ⁻¹)	Conc. of Catalyst (mg L ⁻¹)	k (min ⁻¹)	$E_a (kJ mol^{-1})$	T (°C)	Ref.
Magnetic Cobalt- Graphene (MCG)	Co ₃ O ₄	36%	Acid Yellow 17	100	90	500	0.0119	12.0	25	In this study
Co₃O₄- Graphene	Co ₃ O ₄	58%	Phenol	20	2000	67	0.1	26.5	25	Yao et al. ⁵¹
Magnetic MnFe2O4- Graphene	MnFe ₂ O ₄	64%	Orange II	20	500	50	0.019	25.7	25	Yao et al. ⁵²
Supported Co₃O₄ on Graphene	Co ₃ O ₄	38%	Orange II	70	304	100		_	_	Shi <i>et</i> <i>al</i> . ^{49, 68}

a: the remaining part is carbon-based material (i.e., carbon, graphene)