Electronic Supplementary Information

Investigation of In-doped BaFeO_{3-δ} perovskite-type oxygen

permeable membranes

Yao Lu^a, Hailei Zhao^{*,a,c}, Xing Cheng^a, Yibin Jia^a, Xuefei Du^a, Mengya Fang^a, Zhihong Du^a, Kun Zheng^b,

Konrad Świerczek^b

^{*a*} School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China, E-mail: hlzhao@ustb.edu.cn; Fax: +86 10 82376837; Tel: +86 10 82376837

^b Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and

Technology, al. A . Mickiewicza 30, 30-059 Krakow, Poland

^c Beijing Key Lab of New Energy Materials and Technologies, 30 Xueyuan Road, Beijing 100083, China

Figure S1. Thermal expansion curves of selected $BaFe_{1-x}In_xO_{3-\delta}$ materials recorded in dilatometry experiment.

Figure S2. O_2 -TPD profiles of $BaFe_{0.9}In_{0.1}O_{3-\delta}$ and $BaFe_{0.8}In_{0.2}O_{3-\delta}$ oxides.

Figure S3. (a) Weight loss, and (b) calculated oxygen nonstoichiometry as a function of temperature for $BaFe_{1-x}In_xO_{3-\delta}$ (x = 0.1, 0.15 and 0.2) oxides in air. Please notice that in Fig. S3(a) final weight is taken as 100%.