Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supporting Information

Facile pH-mediated synthesis of morphology-tunable MnCO₃ and their transformation to truncated octahedral spinel LiMn₂O₄ cathode materials for superior lithium storage

Sisi Huang, Hao Wu*, Penghui Chen, Yi Guo, Bo Nie, Baojun Chen, Heng Liu and Yun Zhang*

Department of New Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China

* Corresponding Author. E-mail: hao.wu@scu.edu.cn and y_zhang@scu.edu.cn

Fig. S1 Electrochemical test of LMO-S: rate capabilities under variable current rate and cycle performances. The voltage range of 3.0-4.3 V *vs.* Li/Li⁺.

Fig. S2 SEM image of LMO-S.

Fig. S3 (A) N_2 adsorption/desorption isotherms and (B) pore size distribution curves of LMO_{7.0} and LMO_{8.5}