Electronic Supplementary Information (ESI)

Two (3,6)-connected porous metal-organic frameworks based on liner trinuclear $\left[\mathrm{Co}_{3}(\mathrm{COO})_{6}\right]$ and paddlewheel dinuclear $\left[\mathrm{Cu}_{2}(\mathrm{COO})_{4}\right]$ SBUs: gas adsorption, photocatalytic behaviour, and magnetic properties

Jun Zhao, ${ }^{\text {abc }}$ Wen-Wen Dong, ${ }^{\text {a }}$ Ya-Pan Wu, ${ }^{\text {a }}$ Ye-Nan Wang, ${ }^{a}$ Chao Wang, ${ }^{a}$ Dong-Sheng Li, ${ }^{* a}$ and QiChun Zhang*,,d
${ }^{a}$ College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, 443002, P. R. China. E-mail: lidongsheng1@126.com; Tel:+86 7176397506
${ }^{b}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
${ }^{\text {c School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. E-mail: }}$ qczhang@ntu.edu.sg; Tel: +65 67904705
${ }^{d}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

Table S1 Selected bond lengths [\AA] and angles [${ }^{\circ}$] for compound $\mathbf{1}$ and 2.

1			
$\mathrm{Co}(1)-\mathrm{O}(1)$	2.076(3)	$\mathrm{Co}(1)-\mathrm{O}(1) \# 1$	2.076(3)
$\mathrm{Co}(1)-\mathrm{O}(3) \# 2$	2.139(3)	$\mathrm{Co}(1)-\mathrm{O}(3) \# 3$	2.139(3)
$\mathrm{Co}(1)-\mathrm{O}(4) \# 5$	2.152(3)	$\mathrm{Co}(1)-\mathrm{O}(4) \# 4$	2.152(3)
$\mathrm{Co}(2)-\mathrm{O}(6) \# 3$	1.978(4)		
$\mathrm{Co}(2)-\mathrm{O}(2)$	2.022(4)	$\mathrm{Co}(2)-\mathrm{O}\left(7^{\prime}\right)$	2.104(10)
$\mathrm{Co}(2)-\mathrm{O}(7)$	$2.106(5)$	$\mathrm{Co}(2)-\mathrm{N}(2)$	2.124(6)
$\mathrm{Co}(2)-\mathrm{N}(3) \# 6$	2.14(4)	$\mathrm{Co}(2)-\mathrm{O}(4) \# 4$	2.159(3)
$\mathrm{Co}(2)-\mathrm{O}(5) \# 4$	2.161(4)		
2			
$\mathrm{Cu}(1)-\mathrm{O}(5) \# 1$	2.005(2)	$\mathrm{Cu}(1)-\mathrm{O}(6) \# 2$	2.004(2)
$\mathrm{Cu}(1)-\mathrm{O}(2) \# 3$	2.017(2)	$\mathrm{Cu}(1)-\mathrm{O}(1)$	2.028(2)
$\mathrm{Cu}(1)-\mathrm{O}(4) \# 4$	2.199(2)	$\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 3$	2.7226(7)
$\mathrm{O}(5) \# 1-\mathrm{Cu}(1)-\mathrm{O}(6) \# 2$	166.84(10)	$\mathrm{O}(5) \# 1-\mathrm{Cu}(1)-\mathrm{O}(2) \# 3$	87.78(11)
$\mathrm{O}(6) \# 2-\mathrm{Cu}(1)-\mathrm{O}(2) \# 3$	90.63(10)	$\mathrm{O}(5) \# 1-\mathrm{Cu}(1)-\mathrm{O}(1)$	91.69(10)
$\mathrm{O}(6) \# 2-\mathrm{Cu}(1)-\mathrm{O}(1)$	86.98(10)	$\mathrm{O}(2) \# 3-\mathrm{Cu}(1)-\mathrm{O}(1)$	167.26(9)
$\mathrm{O}(5) \# 1-\mathrm{Cu}(1)-\mathrm{O}(4) \# 4$	99.78(9)	$\mathrm{O}(6) \# 2-\mathrm{Cu}(1)-\mathrm{O}(4) \# 4$	93.36(9)
$\mathrm{O}(2) \# 3-\mathrm{Cu}(1)-\mathrm{O}(4) \# 4$	93.52(9)	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(4) \# 4$	99.11(9)
$\mathrm{O}(5) \# 1-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 3$	77.45(7)	$\mathrm{O}(6) \# 2-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 3$	89.38(7)
$\mathrm{O}(2) \# 3-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 3$	83.53(7)	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 3$	83.93(7)
$\mathrm{O}(4) \# 4-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 3$	176.00(7)		

[^0]Table S2 The gas adsorption capacities of MOFs based on H_{3} BPT ligand.

compounds	BET / Langmuir surface area $\left[\mathrm{m}^{2} \mathrm{~g}^{-1}\right]$	CO_{2} uptake at $\left[\mathrm{cm}^{3} \mathrm{~g}^{-1}\right]$	H_{2} uptake at 77 K	Refs
$\mathrm{Mg}_{3}(\mathrm{BPT})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$	714/837		$1.3 \mathrm{wt} \%$	26a
porph@MOM-11	997/1096	90.2/273K	$1.40 \mathrm{wt} \%$	26b
Porph(Cl)@MOM-11-(Na^{+})	965/1077	96.9/273K	1.46 wt\%	26b
Porph(C1)@MOM-11-(Ba^{2+})	919/1020	92.5/273K	1.38 wt\%	26b
Porph(Cl-)@MOM-11-($\mathbf{C d}^{2+}$)	893/995	84.5/273K	1.33 wt\%	26b
Porph(Cl)@MOM-11-($\mathbf{M n}^{2+}$)	995/1077	96.4/273K	$1.58 \mathrm{wt} \%$	26b
$\mathrm{Yb}(\mathrm{BPT})\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot(\mathrm{DMF})_{1.5}(\mathrm{H} 2 \mathrm{O})_{1.25}$	515.6	16.7/296K	-	26c
$\mathrm{Cu}_{3}\left(\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{O}_{6}\right)_{2}(\mathrm{UMCM}-150)$	2300/3100	-	2.1 wt\%	26d
porph@MOM-10	1158/1309	-	$1.30 \mathrm{wt} \%$	26e
Mnporph@MOM-10-Mn	1140/1282	-	1.58 wt\%	26e
Cuporph@MOM-10-CdCu	290/332	-	0.42 wt\%	26e
porph@MOM-11 (P11)	997/1096	93/273K	-	26f
P11-Cu	1251/1406	92/273K	-	26f

(I)

(II)

Fig. S1The two coordination modes of BPT^{3}-ligand in $\mathbf{1}$ and $\mathbf{2}$.

Fig. S2 View of the 3D framework constructed by $\left[\mathrm{Co}_{3}(\mathrm{BPT})_{2}\right]$ units with showing the 1 D hexagonal channels.

Fig. S3 Projection view of the 1D pore in $\mathbf{1 .}$

Fig. S4 View of 1D hydrophilic channel in $\mathbf{2}$ along the c-direction.

Fig. S5 The PXRD patterns of compound $\mathbf{1}$ and 2 (a for 1, b for 2).

Fig. S6 Thermogravimetric curve of compound $\mathbf{1}$ and 2 (a for1, b for $\mathbf{2}$).

Fig. S7 The temperature-dependent PXRD patterns of $\mathbf{2}$.

Photocatalytic experiments

The band gap sizes of polymer were investigated by UV-vis diffuse reflection measurement method at room temperature. The results give an E_{g} (band gap energy) value of 2.10 eV (Fig. S8, ESI \dagger). The photocatalytic activities of compound $\mathbf{1}$ were further studied. The $\alpha h \nu^{2}$ vs hv curves for products are shown in Figure S. According to the equation $(\alpha \mathrm{hv})^{2}=\mathrm{K}(\mathrm{hv}-\mathrm{Eg})$ (where α is the absorption coefficient, $\mathrm{h} v$ is the discrete photo energy, K is a constant, and Eg is the band gap energy), the extrapolated value (the straight lines to the x axis) of h v at $\alpha=0$ give absorption edge energies corresponding to $E_{\mathrm{g}}=2.10 \mathrm{eV}$ for the compound. ${ }^{1,2}$

Possible photocatalytic reaction mechanism

As mentioned in the literature, the photocatalytic mechanism is deduced as follows: because the HOMO is mainly contributed by oxygen and (or) nitrogen 2 p bonding orbitals (valence band, VB) and the LUMO by empty transition metal orbitals (conduction band, CB). Under visible light irradiation, the electrons (e^{-}) were excited from the valence band (VB) to the conduction band (CB). The same number of holes (h^{+}) that have oxidation remained in the valence band. Furthermore, O_{2} or hydroxyl $\left(\mathrm{OH}^{-}\right)$adsorbed on the surfaces of complexes could interact with the electrons (e^{-}) on the CB or the hole (h^{+}) on the VB, respectively, which probably formed the hydroxyl radicals $(\cdot \mathrm{OH})$. Later on, the $\cdot \mathrm{OH}$ radicals could degrade the organic dye effectively to accomplish the photocatalytic process. ${ }^{3-5}$

Fig. S8 The $\alpha h v^{2}$ vs h ν curve of $\mathbf{1}$.

Fig. S9 Absorption spectra of the RhB solution during the decomposition reaction under visible-light irradiation with the use of compound 1 and $\mathrm{H}_{2} \mathrm{O}_{2}$.

Fig. S10 The PXRD patterns of $\mathbf{1}$ (a for as-synthesized, b for after the photocatalytic experiment).

Fig.S11 Pore size distribution based on Horvath-Kawazoe (H-K) model in 2.

References:

1 S. Tsunekawa, T. Fukuda and A. Kasuya, J. Appl. Phys., 2000, 87, 1318.

2 A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev., 1995, 95, 735.
3 F. Wang, Z. S. liu, H. Yang, Y. X. Tan, J. Zhang, Angew. Chem., Int. Ed., 2011, 50, 450.

4 L. L. Wen, L. Zhou, B. G. Zhang, X. G. Meng, H. Qu and D. F. Li, J. Mater. Chem., 2012, 22, 22603.

5 T. Wen, D. X. Zhang, J. Liu, R. Lin and J. Zhang, Chem. Commun., 2013, 49, 5660.

[^0]: Symmetry transformations used to generate equivalent atoms: For compound 1: \#1-x+5/3, -y+1/3, -z+4/3; \#2: y+1/3, -x+y+2/3,$\mathrm{z}+2 / 3$; \#3: $-\mathrm{y}+4 / 3, \mathrm{x}-\mathrm{y}-1 / 3, \mathrm{z}+2 / 3$; \#4: $\mathrm{x}-\mathrm{y}, \mathrm{x}-1,-\mathrm{z}+1 ; \# 5:-\mathrm{x}+\mathrm{y}+5 / 3,-\mathrm{x}+4 / 3, \mathrm{z}+1 / 3 ; \# 6: \mathrm{y}+1,-\mathrm{x}+\mathrm{y}+1,-\mathrm{z}+2$. For compound 2: \#1: -$x+y-1 / 3,-x+1 / 3, z-2 / 3 ; \# 2: x-y+2 / 3, x+1 / 3,-z+1 / 3 ; \# 3:-x+1 / 3,-y+2 / 3,-z-1 / 3 ; \# 4:-y+1 / 3, x-y+2 / 3, z-1 / 3$.

