Electronic supplementary information

Computational Studies on Structural and Electronic Properties of Functionalized MXene Monolayers and Nanotubes

Xu Zhang, Zhinan Ma, Xudong Zhao, Qing Tang, Zhen Zhou*

Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China *Corresponding Author, Email: zhouzhen@nankai.edu.cn (ZZ).

Figure S1. Atomic structures of (13,0) zigzag Sc_2CH_2 and $Sc_2C(OH)_2$ nanotubes rolled from A/Sc₂C/A, B/Sc₂C/B, and A/Sc₂C/B layers, respectively.

	ΔE (kal/mol/formula)		
(10,10) ^H	0		
(9,9) ^H	0.659		
(8,8) ^H	2.084		
(13,0) ^H	7.867		
(10,10) ^{OH}	0		
(9,9) ^{OH}	1.724		
(8,8) ^{OH}	4.495		
(13,0) ^{OH}	15.469		

Table S1. Relative total energies ΔE (kal/mol/formula) for the most stable zigzag nanotubes and armchair nanotubes for Sc₂CH₂ and Sc₂C(OH)₂, respectively.

Table S2. Lattice parameters a (Å), length of Sc-X bond (X = H for Sc₂CH₂ or O for Sc₂C(OH)₂ and Sc₂CO₂) (Å), length of Sc-C bond (Å) from DFT, as well as the absolute value of fractional error between DFTB and DFT E_a , E_x and E_C .

System	a (Å)	Ea	Sc-X (Å)	E_X	Sc-C (Å)	E _C
Sc ₂ C	3.225	4.4%	/	/	2.221	1.7%
A/Sc ₂ C/A ^(H)	3.233	1.1%	2.124	0.5%	2.241	0.8%
$A/Sc_2C/A^{\rm (OH)}$	3.227	0.7%	2.216	2.2%	2.244	0.4%
$A/Sc_2C/B^{(O)}$	3.431	2.8%	2.081/2.098	0.2%/0.2%	2.530/2.201	4.4%/1.2%

Figure S2. Atomic structures of (10,10) armchair Sc₂CO₂ nanotubes rolled from A/Sc₂C/A, B/Sc₂C/B, and A/Sc₂C/B layers, respectively.

Figure S3. Band structures near Fermi level for the corresponding Sc_2CH_2 (a) and $Sc_2C(OH)_2$ (b) monolayers along direction b, respectively.