Supporting Information

High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications

Bin Liang^{*a*,†}, Wu Zhan^{*a*,†}, Genggeng Qi^{*b*}, Sengseng Lin^{*a*}, Qian Nan^{*a*}, Yuxuan Liu^{*a*}, Bing Cao^{*a*,*} and Kai Pan^{*a*,*}

* Corresponding authors:

pankai@mail.buct.edu.cn (Kai Pan); bcao@mail.buct.edu.cn (Bing Cao)

^{*a*} Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China

^b Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA

Preparation of GO aqueous suspensions

Graphite powder was mixed with H_2SO_4 , $K_2S_2O_8$, and P_2O_5 . The mixture was kept at 80 °C for 4.5 h. Distilled water was added for dilution which was followed by filtration, washing, and drying. H_2SO_4 and KMnO₄ were slowly added to the pretreated graphite in an ice bath. The mixture was reacted at 35 °C for 2 h, and distilled water was added for hydrolysis. After 2 h, 30% H_2O_2 was added to the mixture. The mixture was allowed to stand for at least 12 h, after which the clear supernatant was decanted. The remaining precipitate was washed with 5% HCl solution and washed again with distilled water. The final solution was centrifuged and ultrasonicated for 4 h. The concentration of the obtained GO was 1.23 g/L.

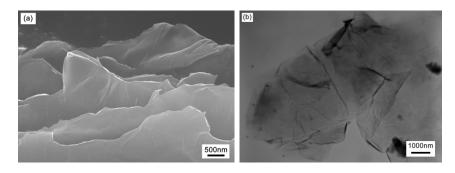


Fig. 1S (a) SEM and (b) TEM morphology of the GO sample.

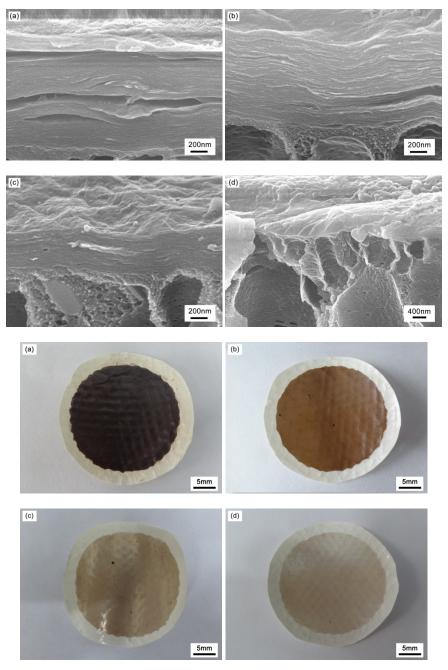


Fig. S2 The GO film thickness increases linearly with the specific GO deposition

Fig. S3 Digital photo of folding GO/PAN composite membrane

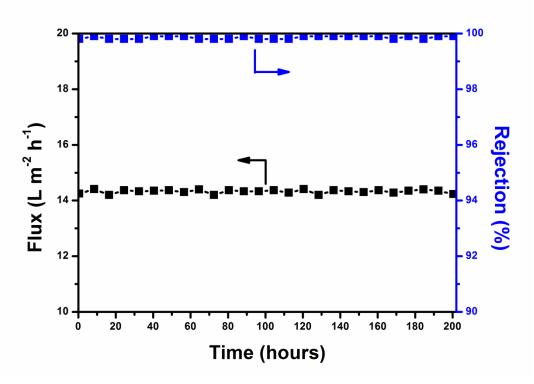


Fig. S4 the long-term stability of the composite membrane with 35,000 ppm NaCl solution at 30 °C.