## Superhydrophobic and Stable Mesoporous Polymeric Adsorbent for Siloxane Removal: D4 Super-Adsorbent

Tahereh Jafari,<sup>a</sup><sup>‡</sup> Iman Noshadi,<sup>b,c</sup><sup>‡</sup> Nasser Khakpash <sup>a</sup> and Steven. L. Suib\* <sup>a,d</sup>

<sup>a</sup> Institute of Materials Science, University of Connecticut, U-3060, 91 North Eagleville Road, Storrs, Connecticut 06269, United States

<sup>b</sup> Department of Chemical & Biomolecular Engineering, 191 Auditorium Road, Unit 3222, Storrs, CT 06269-3222, United States

<sup>c</sup> Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States

<sup>*d*</sup> Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States s here. ‡These authors contributed equally.

\*Correspondence and requests for materials should be addressed to S.L.S. (email:steven.suib@uconn.edu).

## **Electronic Supplementary Information**

Biogas composition at the entrance of the biogas polishing system at 30°C and 25-30 mbar (Table S1), properties of linear and cyclic siloxanes (Table S2) and some high capacity current alternative for siloxane removal (Table S3), the siloxane adsorption capacity of PDVB and PDVB-HT (Table S4).

Molecular configuration of D4 (Figure S1), schematic view of siloxane adsorption set-up (Figure S2), GC/MS pattern of standard concentration of D4 in hexane which was used to derive calibration curve (Figure S3), GC/MS pattern of amount of D4 in trap which was sampled at different time interval when PDVB-VI-x under 50% RH was loaded (Figure S4), GC/MS pattern of amount of D4 in trap which was sampled at different time interval when AC under 50% RH was loaded (Figure S5) and GC/MS pattern of saturated AC and PDVB-VI-x, washed by hexane (Figure S6).

| Compound/trace         | Units                            | Range     |
|------------------------|----------------------------------|-----------|
| CH <sub>4</sub>        | %                                | 55.1-57.8 |
| CO <sub>2</sub>        | %                                | 28.5-32.5 |
| N <sub>2</sub>         | %                                | 7.5-12    |
| O <sub>2</sub>         | %                                | 1.8-2.9   |
| Relative humidity (RH) | %sat                             | 100       |
| $H_2S$                 | ppm                              | 104-1.854 |
| Organic sulfur         | mg/m <sup>3</sup> <sub>STP</sub> | 0.8-2.2   |
| Alkanes                | mg/m <sup>3</sup> <sub>STP</sub> | 55.2-92.4 |
| Aromatic compound      | $mg/m^3_{STP}$                   | 6.7-13.5  |
| D3                     | $mg/m^3_{STP}$                   | 0-0.8     |
| D4                     | $mg/m^3_{STP}$                   | 4-6.5     |
| D5                     | $mg/m^3_{STP}$                   | 6.5-9     |

Table S1. Biogas composition at the entrance to the biogas polishing system at  $30^{\circ}$ C and  $25-30 \text{ mbar}(g)^2$ .

 Table S2. Properties of linear and cyclic siloxanes.

| Siloxane type                 | Abbrv | Molecular<br>weight<br>(g/mol) | Vapor<br>Pressure (torr) | Boiling<br>point (oC) | Water<br>solubility<br>(mg/L) at<br>25°C |
|-------------------------------|-------|--------------------------------|--------------------------|-----------------------|------------------------------------------|
| Hexamethyldisiloxane          | L2    | 162                            | 31                       | 100                   | 0.93                                     |
| Octamethyltrisiloxane         | L3    | 237                            | 3.9                      | 153                   | 0.04                                     |
| Decamethyltetrasiloxane       | L4    | 311                            | 0.43                     | 194                   |                                          |
| Dodecamethylpentasiloxane     | L5    | 385                            | 0. 1022                  | 230                   |                                          |
| hexamethylcyclotrisiloxane    | D3    | 222                            | 10                       | 134                   | 1.56                                     |
| Octamethycyclotetrasiloxane   | D4    | 296                            | 1.3                      | 175                   | 0.06                                     |
| Decamethylcyclopentasiloxane  | D5    | 371                            | 0.4                      | 210                   | 0.02                                     |
| Dodecamethylcyclohexasiloxane | D6    | 445                            | 0. 0494                  | 245                   | 0.005                                    |

 Table S3. Some high capacity current alternatives for siloxane removal.

| Material              | Capacity<br>(mg/g-adsorbent) | Siloxane<br>type | Surface area (m <sup>2</sup> /g) | Reference |
|-----------------------|------------------------------|------------------|----------------------------------|-----------|
| AC impregnated by KOH | 878                          | L2               | N/A                              | 17        |
| AC fiber cloths       | 365                          | D4               | 1576                             | 23        |
| ACs                   | 1732                         | D4               | 2142                             | 5         |

Table S4. The siloxane adsorption capacity of PDVB and PDVB-HT.

| Materials | Regular gas stream |
|-----------|--------------------|
| PDVB      | 1951±74            |
| PDVB-HT   | 1965±36            |



Figure S1. Molecular structure of octamethylcyclotetrasiloxane (D4).



Figure S2. Experimental set-up for siloxane adsorption.



**Figure S3.** GC/MS pattern of standard concentration of D4 in hexane which was used to derive the calibration curve (D4 peak appears at 4.5 s).



**Figure S4.** GC/MS pattern of amounts of D4 in trap which were sampled at different time intervals when PDVB-VI-x under 50% RH was loaded (D4 peak appears at 4.5 s).



**Figure S5.** GC/MS pattern of amounts of D4 in trap which were sampled at different time intervals when AC under 50% RH was loaded (D4 peak appears at 4.5 s).



Figure S6. GC/MS pattern of saturated AC (red) and PDVB-VI-x (black), washed by hexane.