Nitrogen-rich porous carbon derived from biomass as a high

performance anode material for lithium ion batteries

Junke Ou, a Yongzhi Zhang, b Li Chen, c Qian Zhao, a Yan Meng, Yong Guo*c and Dan Xiao*a,b,c

Fig. S2 TEM images of the electrode of the OHC before (a, c) and after (b, d) 20 cycles at a current density of 0.1 A g⁻¹ in the range 0.01-3 V, The insets of (a) and (b) are the partial enlargements of the relevant images.

Sample	Chemical	compositio	composition[wt%]			
	С	Ν	О	Н		
NOHC	83.7	6.7	5.3	4.3		
OHC	85.0	5.4	6.1	3.5		

Table S1. Elemental analysis of NOHC and OHC.

		•		
Sample	Carbon sources	Initial reversible capacity	Rate capability (mA h g ⁻¹)	Ref.
		$(mA h g^{-1})$		
ОНС	Ox horn	1290 at 0.1 A g ⁻¹	304 at 5 A g ⁻¹	This work
Rice husk-derived carbon	Rice husk	393 at 0.075 A g ⁻¹	137 at 3.75 A g ⁻¹	[S1]
Heteroatom-enriched amorphous carbon with hierarchical porous structure(HAC-HPS)	Cotton cellulose	935 at 0.05 A g ⁻¹	240 at 2 A g ⁻¹	[82]
Hierarchical porous	Rice straws	986 at 0.1 C	257 at 2 C	[S3]
Protein derived mesoporous carbon (PMC)	Egg white	1780 at 0.1 A g ⁻¹	205 at 4 A g ⁻¹	[84]
Microstructure of mangrove- charcoalderived carbon (MC)	Mangrove charcoal	524 at 0.003 A g ⁻¹	440 at 0.3 A g ⁻¹	[85]
New carbonaceous material	Spongy pomelo peels	450 at 0.04 A g^{-1}	293 at 0.32 A g ⁻¹	[86]
Disordered carbons	Cherry stones	600 at 0.1 C	200 at 5 C	[S7]
Porous carbon spheres	Porous starch	614	-	[S8]
Pyrolytic carbon	Sorona	615 at 0.1 C	-	[S9]
Pyrolyzed Sugar carbons (PSCs)	Local sugar	476 at 0.1 C	-	[S10]
High capacity disordered carbons	Coconut shells	600	-	[S11]
Microporous carbon	Pinecone hull	321 at 0.01 A g ⁻¹	-	[S12]
Disordered carbonaceous materials	Coffee shells	456 at 0.2 C	-	[\$13]

Table S2.	Comparison	of the	performances	of lithium	ion	batteries	used	OHC	and	those	of so	me	other	typically
carbon mat	terials derive	d from	biomass as an	odes.										

High-capacity	Peanut shells	1650 at 0.1 C	-	[S14]
disordered carbons				
Disordered	Banana fibers	401 at 0.1 C	-	[S15]
carbonaceous				
materials				
Carbonaceous	Sugarcane	310 at 0.105 A g ⁻¹	-	[S16]
materials	bagasse			

References

- [S1] L. P. Wang, Z. Schnepp and M. M. Titirici, J. Mater. Chem. A, 2013, 1, 5269.
- [S2] Y. S. Yun and H. J. Jin, Mater. Lett., 2013, 108, 311.
- [S3] F. Zhang, K. X Wang, G. D. Li and J. S. Chen, Electrochem. Commun., 2009, 11, 130.
- [S4] Z. Li, Z. W. Xu, X. H. Tan, H. L. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen and D. Mitlin, *Energy Environ. Sci.*, 2013, **6**, 871.
- [S5] T. Liu, R. Y. Luo, W. M. Qiao, S. H. Yoon and I. Mochida, *Electrochim. Acta*, 2010, 55, 1696.
- [S6] X. L. Sun, X. H. Wang, N. Feng, L. Qiao, X. W. Li and D. Y. He, J. Anal. Appl. Pyrol., 2013, 100, 181.
- [S7] J. C. Arrebola, A. Caballero, L. Hernán, J. Morales, M. Olivares-Marín and V. Gómez- Serrano, J. Electrochem. Soc., 2010, 157, A791.
- [S8] H. Q. Wang, Q. F. Dai, Q. Y. Li, J. H. Yang, X. X. Zhong, Y. G. Huang, A. Zhang and Z. X. Yan, Solid State Ionics, 2009, 180, 1429.
- [S9] M. Christy, M R Jisha, A. R. Kim, K. S. Nahm, D. J. Yoo and E. K. Suh, Indian J. Eng. Mate. S., 2010, 17, 343.
- [S10] G. T. K. Fey and Y. C. Kao, Mater. Chem. Phys., 2002, 73, 37.
- [S11] Y. J. Hwang, S. K. Jeong, J. S. Shin, K. S. Nahm and A. M. Stephan, J. Alloy. Compd., 2008, 448, 141.
- [S12] Y. Zhang, F. Zhang, G. D. Li and J. S. Chen, *Mater. Lett.*, 2007, 61, 5209.
- [S13] Y. J. Hwang, S. K. Jeong, K. S. Nahm, J. S. Shin and A. M. Stephan, J. Phys. Chem. Solids, 2007, 68, 182.
- [S14] G. T. K. Fey, D. C. Lee, Y. Y. Lin and T. P. Kumar, Synthetic Met., 2003, 139, 71.
- [S15] A. M. Stephan, T. P. Kumar, R. Ramesh, S. Thomas, S. K. Jeong and K. S. Nahm, Mater. Sci. Eng. A, 2006, 430, 132.
- [S16] Y. Matsubara, S. M. Lala and J. M. Rosolen. J. Braz. Chem. Soc., 2010, 21, 1877.