Electronic Supplementary Information

Metal Acetylacetonate Complexes for High Energy Density Non-Aqueous Redox Flow Batteries

James A. Suttil, Jonathan F. Kucharyson, Ismailia L. Escalante-Garcia, Pablo J. Cabrera, Bryant R. James, Robert F. Savinell, Melanie S. Sanford*, and Levi T. Thompson*

Ligand Synthesis	S1
Complex Synthesis	
NMR Spectra	
Solubility Measurements	
X-Ray Structure Determination	
Powder X-ray Diffraction Patterns	
Cyclic Voltammograms	
Randles-Sevcik and EIS Plot.	
References.	

Ligand Synthesis

General Procedure:

On the benchtop, potassium carbonate (0.1 eq.), the desired acrylate (1 eq.) and acetylacetone (5 eq.) were combined in a 20 mL vial, sealed and heated to 70 °C overnight with stirring. The resulting bright orange suspension was filtered through a celite pad and the solid residue was washed with 2×5 mL portions of acetylacetone. The washings and filtrate were combined and dried *in vacuo* to give a bright orange liquid, which was purified by vacuum distillation. Any variations from this procedure are disclosed for each individual compound. The authors note that the 13 C NMR data for the ligands detailed herein show less carbon signals than would be expected from the ascribed structures. The authors have attributed this to signal overlap given the structural similarity of the tautomers.

Preparation and characterization of tetrahydrofurfuryl 4-acetyl-5-oxohexanoate:

Tetrahydrofurfuryl 4-acetyl-5-oxohexanoate was prepared according to the general procedure employing tetrahydrofurfuryl acrylate (6.60 mL, 40.0 mmol), acetylacetone (20.5 mL, 200 mmol) and potassium carbonate (0.55 g, 3.98 mmol). The title compound was isolated as a yellow liquid via vacuum distillation (0.079 mm Hg, 152 °C) (9.26 g, 90 % yield, 36.1 mmol). IR (v, cm⁻¹): 2953 (v), 1728 (v), 1698 (v), 1421 (v), 1359 (v), 1246 (v), 1154 (v), 1080 (v), 1022 (v), 992 (v). H NMR (400 MHz, CDCl₃), mixture of tautomers: v0.16H), 4.05-4.15 (multiple peaks, 2H), 3.98 (v0, 1H), 3.84 (v0, 1H), 3.72-3.78 (multiple peaks, 1.7H), 2.57 (v0, 0.4H), 2.41 (v0, 0.4H), 2.32 (v0, 14 Hz, 1.5H), 2.09-2.18 (multiple peaks, 6.46H), 1.97 (v0, 1H), 1.88 (v0, 2H), 1.56 (v0, 1H). The control of the compound was isolated as a yellow liquid via vacuum distillation (0.046 MHz, CDCl₃): v0 (v0, 150 (v0,

28.1, 28.0, 25.7, 23.0, 23.0, 22.9. HR-MS (ESI, positive ion mode) m/z calcd. for $C_{13}H_{21}O_5$ [M+H]⁺: 257.1384, found: 257.1377.

Preparation and characterization of 2-methoxyethyl 4-acetyl-5-oxohexanoate:

2-Methoxyethyl 4-acetyl-5-oxohexanoate was prepared according to the general procedure employing ethylene glycol methyl ether acrylate (2.57 mL, 20 mmol). The title compound was isolated as a yellow liquid via vacuum distillation (0.092 mm Hg, 119 °C) (2.66 g, 58 %, 11.5 mmol). IR (v, cm⁻¹): 2934 (v), 1728 (v), 1698 (v), 1420 (v), 1359 (v), 1248 (v), 1152 (v), 1032 (v). H NMR (400 MHz, CDCl₃), mixture of tautomers: v 16.77 (v), 0.3H), 4.22-4.25 (multiple peaks, 2H), 3.75 (v), 175 (v), 18-6.8 Hz, 0.8H), 3.57-3.60 (multiple peaks, 2H), 3.38-3.39 (multiple peaks, 3H), 2.60 (v), 0.6H), 2.44 (v), 0.6H), 2.35 (v), 16-6.8 Hz, 1.6H), 2.12 – 2.20 (multiple peaks, 7.2H). S NMR (175.95 MHz, CDCl₃), mixture of tautomers: v03.8, 191.4, 172.6, 108.7, 70.4, 70.4, 67.0, 63.7, 63.7, 59.0, 59.0, 34.7, 31.6, 29.4, 23.0, 22.9. HR-MS (ESI, positive ion mode) v03.7 calcd. for v1.1 calcd. for v1.2 calcd. for v1.3 for v2.3 calcd. for v3.4 found: 253.1044.

Preparation and characterization of 2-(2-methoxyethyl)ethyl 4-acetyl-5-oxohexanoate:

(2-(2-Methoxyethoxy)ethyl 4-acetyl-5-oxohexanoate was prepared according to the general procedure employing 2-(2-methoxyethoxy)ethyl acrylate (4.05 g, 23.2 mmol), 2,4-pentanedione (11.9 mL, 116 mmol) and potassium carbonate (0.32 g, 2.32 mmol). The title compound was isolated as a yellow liquid via vacuum distillation (0.092 mm Hg, 119 °C) (4.81 g, 76 % yield, 17.5 mmol). IR (v, cm⁻¹): 2880 (m), 1729 (s), 1698 (s), 1612 (w), 1421 (w), 1359 (m), 1248 (m), 1139 (m), 1107 (s), 958 (w). ¹H NMR (400 MHz, CDCl₃): δ 16.67 (s, 0.3H), 4.12-4.13 (multiple peaks, 2H), 3.66 (t, J = 7.2 Hz, 0.7H), 3.57-3.60 (multiple peaks, 2H), 3.51-3.54 (multiple peaks, 2H), 3.43-3.45 (multiple peaks, 2H), 3.26-3.27 (multiple peaks, 3H), 2.49 (m, 0.7H), 2.32 (m, 0.7H), 2.23 (t, J = 7.2 Hz, 1.4H), 2.00 – 2.10 (multiple peaks, 7H). ¹³C NMR (100.46 MHz, CDCl₃): δ 203.9, 191.4, 172.6, 108.7, 72.0, 70.6, 70.6, 69.2, 69.1, 67.1, 63.8, 63.8, 59.1, 59.1, 34.8, 31.6, 29.4, 23.0, 22.9.HR-MS (ESI, positive ion mode) m/z calcd. for $C_{14}H_{25}O_{6}$ [M+H]⁺: 289.1646, found: 289.1645.

Preparation and characterization of ethyl 2-methyl-4-acetyl-5-oxohexanoate:

On the benchtop, potassium fluoride dihydrate (4.71 g, 50 mmol), 2,4-pentanedione (20.5 mL, 200 mmol) and ethyl methacrylate (12.4 mL, 100 mmol) were combined in 30 mL of ethanol and refluxed for three days. The bright orange suspension was filtered, concentrated *in vacuo* and refiltered to remove any insoluble species. The bright orange residue was first purified by vacuum distillation (0.050 mm Hg, 60 °C) to give a colourless liquid. This was further purified by silica gel column chromatography employing dichloromethane eluent. The title compound was isolated in 22% yield (4.71 g, 22 mmol) as a mixture contaminated with ethyl 2-methyl-5-oxohexanoate. The mixture was used without further purification. IR (v, cm⁻¹): 2978 (w), 1716 (s), 1462 (w), 1369 (m), 1251 (w), 1159 (s), 1026 (m). HR-MS (ESI, positive ion mode) *m/z* calcd. for C₁₃H₂₁O₅ [M+Na]⁺: 237.1097, found: 237.1098.

Complex Synthesis

One-pot preparation of tris(1,3-diphenyl-1,3-propanedionato)chromium(III) (7), (2,4-pentanedionato)bis(1,3-diphenyl-1,3-propanedionato)chromium(III) (8) and bis(2,4-pentanedionato)(1,3-diphenyl-1,3-propanedionato)chromium(III) (9):

Chromium acetylacetonate (6.00 g, 17.2 mmol) and 1,3-diphenyl-1,3-propanedione (3.85 g, 17.2 mmol) were ground together in a mortar and pestle until a homogeneous, pink powder was obtained. The powder was transferred to a 250 mL Erlenmeyer flask and heated to 175 °C for four hours under a flow of nitrogen. Upon cooling, the title products were separated by silica gel column chromatography employing dichloromethane as the eluent. Tris(1,3-diphenyl-1,3-propanedionato)chromium(III) (7) was isolated as a dark brown solid $(0.32 \text{ g}, 3\% \text{ yield}, 0.45 \text{ mmol}, R_f = 0.84 \text{ in } CH_2Cl_2)$. Mp = 280-281 °C (from CH₂Cl₂); elemental analysis calcd. for C₄₅H₃₃O₆Cr: C 74.89, H 4.61; found: C 75.08, H 4.63; IR (v, cm⁻¹) 3062 (w), 1588 (m), 1515 (s), 1475 (s), 1452 (s), 1440 (m), 1365 (s), 1316 (s), 1226 (m), 1180 (w), 1067 (m), 1024 (m), 941 (w); HRMS (EI) m/z calcd. for $C_{45}H_{33}O_6Cr$: 721.1682; (2,4-Pentanedionato)bis(1,3-diphenyl-1,3found 721.1680. propanedionato)chromium(III) (8) was isolated as a dark brown solid (1.55 g, 15% yield, 2.60 mmol; $R_f = 0.59 \text{ CH}_2\text{Cl}_2$). Crystals suitable for X-ray diffraction were grown by vapour diffusion of hexanes into a chloroform solution of 8. Mp = 257-258 °C (from hexanes/chloroform); elemental analysis calcd. for C₃₅H₂₉O₆Cr: C 70.34, H 4.89; found: C 70.23, H 4.90; IR (v, cm⁻¹) 1584 (w), 1517 (m), 1472 (w), 1450 (w), 1366 (m), 1316 (w), 1224 (w), 1066 (w), 1024 (w), 927 (w); HRMS (EI) m/z calcd. for C₃₅H₂₉O₆Cr: 597.1369; found: 597.1354. Bis(2,4-Pentanedionato)(1,3-diphenyl-1,3-propanedionato)chromium(III)

(9) was isolated as a dark brown solid (2.72 g, 33% yield, 5.73 mmol, $R_f = 0.19$ in CH_2Cl_2). Crystals suitable for X-ray diffraction were grown by vapour diffusion of hexanes into a chloroform solution of the complex. Mp = 237-239 °C (from hexanes/chloroform); elemental analysis calcd. for $C_{25}H_{25}O_6Cr$: C 63.42, H 5.32; found: C 63.17, H 5.31; IR (v, cm⁻¹): 1572 (m), 1517 (s), 1476 (m), 1372 (s), 1314 (w), 1278 (m), 1230 (w), 1069 (m), 1023 (m), 931 (m); HRMS (EI) m/z calcd. for $C_{25}H_{25}O_6Cr$: 473.1056; found: 473.1048.

Preparation of 10:

Preparation of 11:

Complex **11** was prepared by an analogous procedure to complex **10** employing 2-methyl-4-acetyl-5-oxohexanoate (2.12 g, 9.90 mmol), sodium hydride (0.22 g, 9.30 mmol) and CrCl₃(thf)₃ (1.12 g, 3.00 mmol). Purification via silica gel column chromatography yielded **11** as a dark purple tar (0.84 g, 41% yield, 1.22 mmol, $R_f = 0.30$ in 98% CH₂Cl₂/2% THF). Elemental analysis calcd. for $C_{33}H_{51}O_{12}Cr$: C 57.30, H 7.43; found: C 57.57, H 7.32; IR (ν , cm⁻¹) 2979 (ν), 1726 (s), 1562 (s), 1450 (s), 1340 (s) 1289 (m), 1229 (ν), 1172 (s), 1100 (m), 1051 (ν), 1010 (s), 923 (m); HRMS (ESI, positive ion mode) ν c calcd. for $C_{33}H_{52}O_{12}Cr$ [M+H]⁺ 692.2858, found 692.2851.

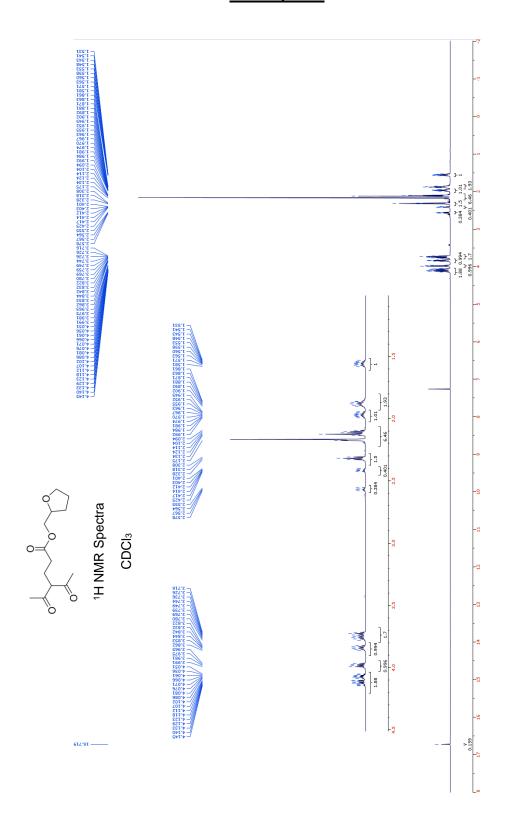
Preparation of 12:

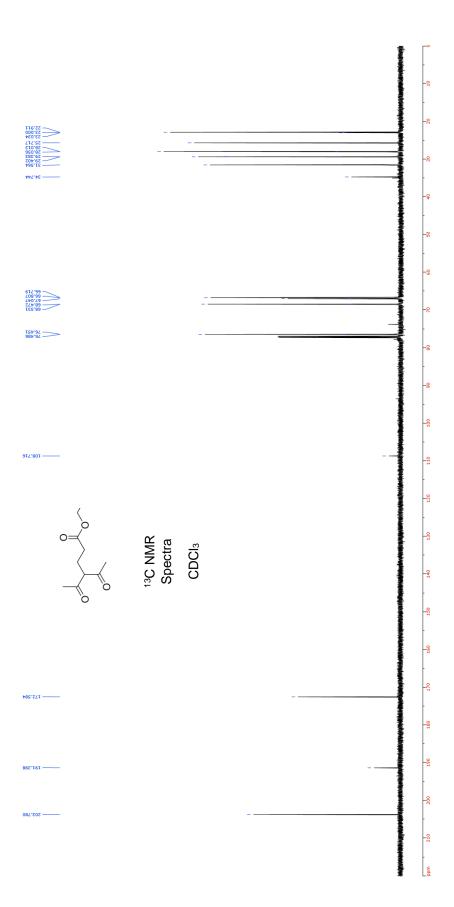
Complex **12** was prepared by an analogous procedure to **10** employing tetrahydrofurfuryl 4-acetyl-5-oxohexanoate (4.10 g, 16.0 mmol), sodium hydride (0.38 g, 16.0 mmol) and $CrCl_3(thf)_3$ (1.93 g, 5.16 mmol). Purification via silica gel column chromatography yielded **12** as a dark purple tar (3.00 g, 71% yield, 3.67 mmol, $R_f = 0.56$ in 80% $CH_2Cl_2/20\%$ THF). Elemental analysis calcd. for $C_{39}H_{57}O_{15}Cr$: C 57.27, H 7.02; found: C 57.33, H 6.69; IR (ν , cm⁻¹) 2954 (ν), 1729 (ν), 1563 (ν), 1455 (ν), 1340 (ν), 1292 (ν), 1159 (ν), 1082 (ν), 985 (ν); HRMS (ESI, positive ion mode) ν c calcd. for $C_{39}H_{58}O_{15}Cr$ [ν] 818.3175; found 818.3165.

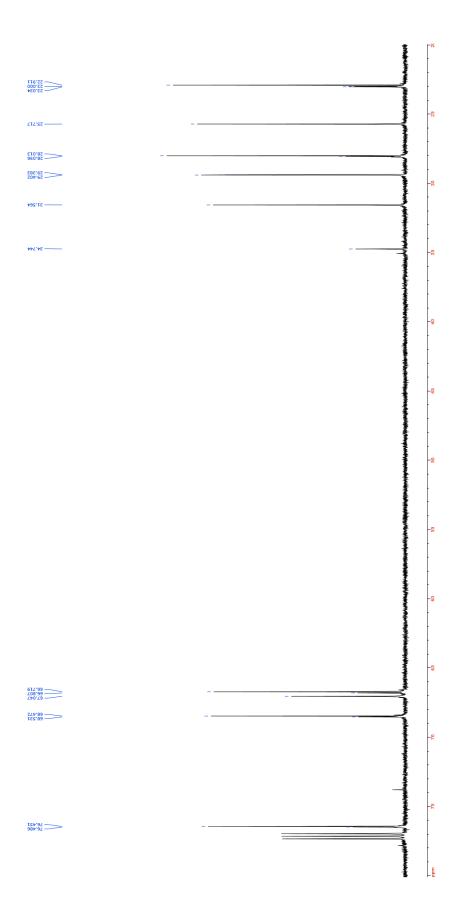
Preparation of 13:

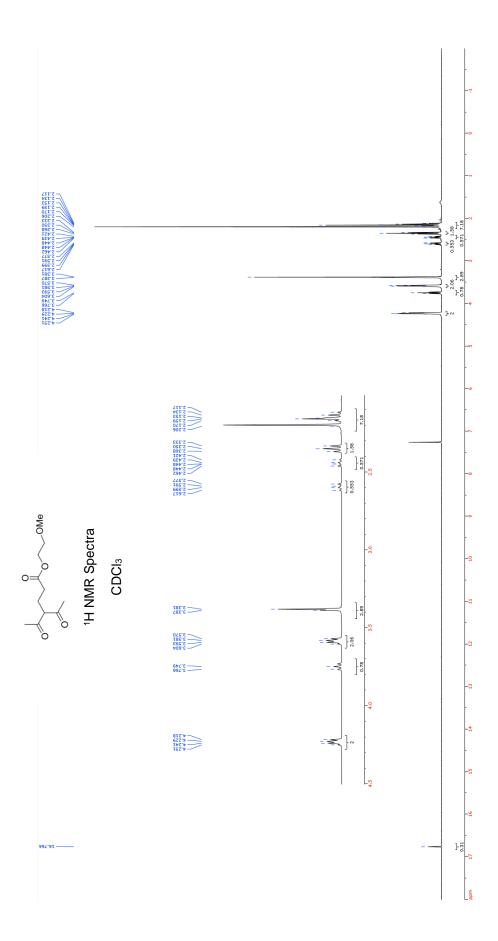
Complex 13 was prepared by an analogous procedure to 10 employing 2-methoxyethyl 4-acetyl-5-oxohexanoate (2.28 g, 9.90 mmol), sodium hydride (0.22 g, 9.30 mmol) and $CrCl_3(thf)_3$ (1.12 g, 3.00 mmol). Purification via silica gel column chromatography yielded 13 as a dark purple tar (1.99 g, 90% yield, 2.69 mmol, $R_f = 0.60$ in 80% $CH_2Cl_2/20\%$ THF. Elemental analysis calcd. for $C_{33}H_{51}O_{15}Cr$: C 53.58, H 6.95; found: C 53.69, H 6.84; IR (ν , cm⁻¹) 2925 (ν), 1729 (ν), 1564 (ν), 1454 (ν), 1340 (ν), 1291 (ν), 1160 (ν), 1125 (ν), 1056 (ν), 1025 (ν), 984 (ν);). HRMS (ESI, positive ion mode) ν /z calcd. for $C_{33}H_{52}O_{15}Cr$ [ν] 740.2706; found 740.2703.

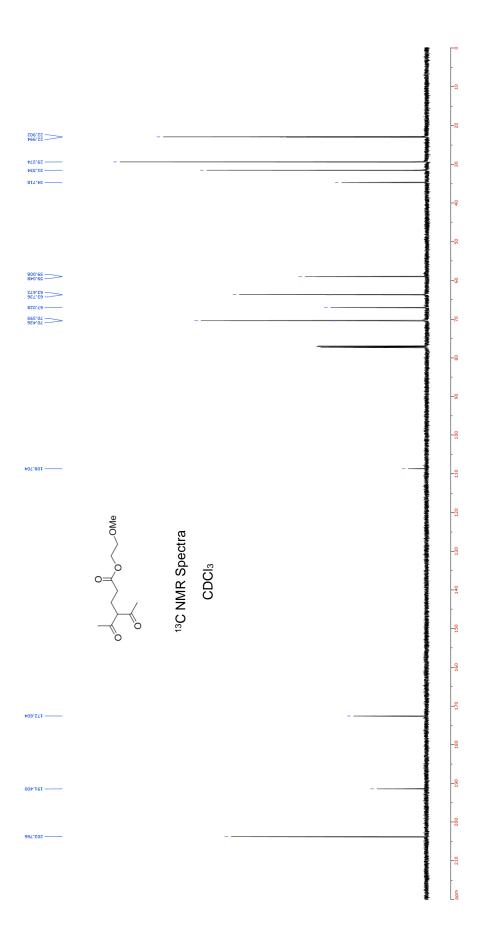
Preparation of 14:

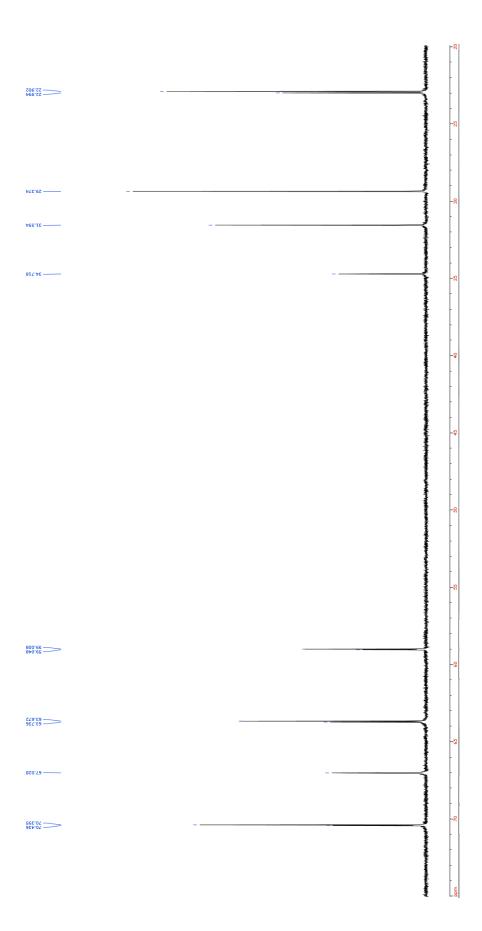

Complex 14 was prepared by an analogous procedure to 10 employing 2-(2-methoxyethoxy)ethyl 4-acetyl-5-oxohexanoate (2.26 g, 8.25 mmol), sodium hydride (0.19 g, 7.75 mmol) and $CrCl_3(thf)_3$ (0.94 g, 2.50 mmol). Purification via silica gel column chromatography yielded 14 as a dark purple tar (1.30 g, 60% yield, 1.49 mmol, $R_f = 0.10$ in

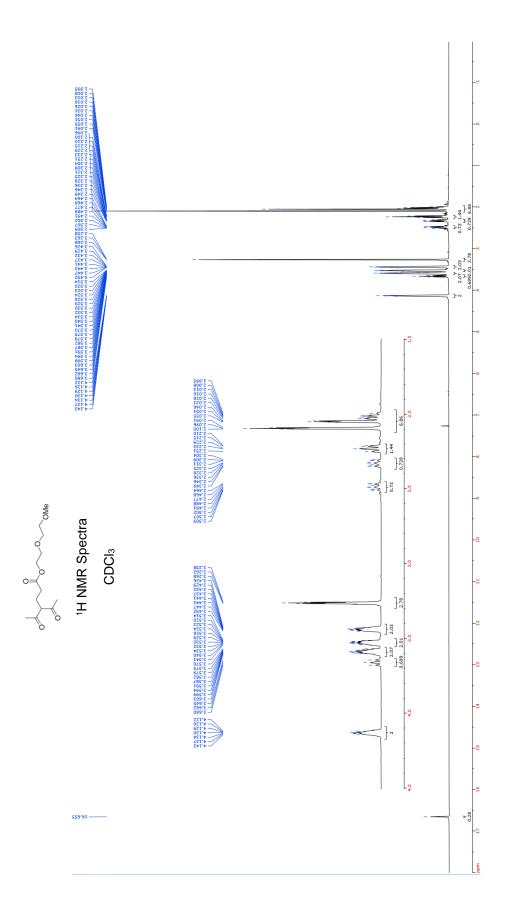

ethyl acetate). Elemental analysis calcd. for $C_{39}H_{63}O_{18}Cr$: C 53.72, H 7.29; found: C 53.77, H 7.16; IR (v, cm⁻¹) 2878 (m), 1729 (s), 1564 (s), 1341 (s), 1292 (m), 1106 (m), 1057 (w), 1020 (w), 985 (m); HRMS (ESI, positive ion mode) m/z calcd. for $C_{39}H_{64}O_{18}Cr$ [M+H]⁺ 872.3492; found 872.3488.

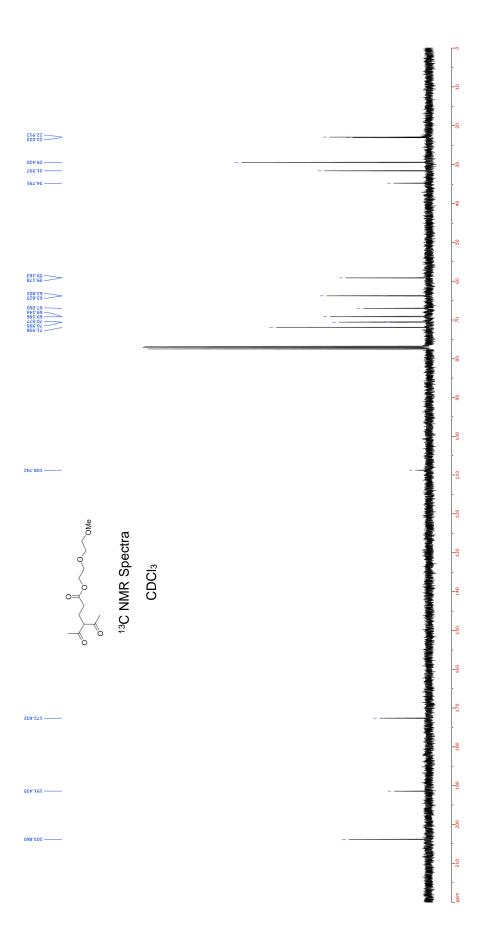

Preparation of 15:

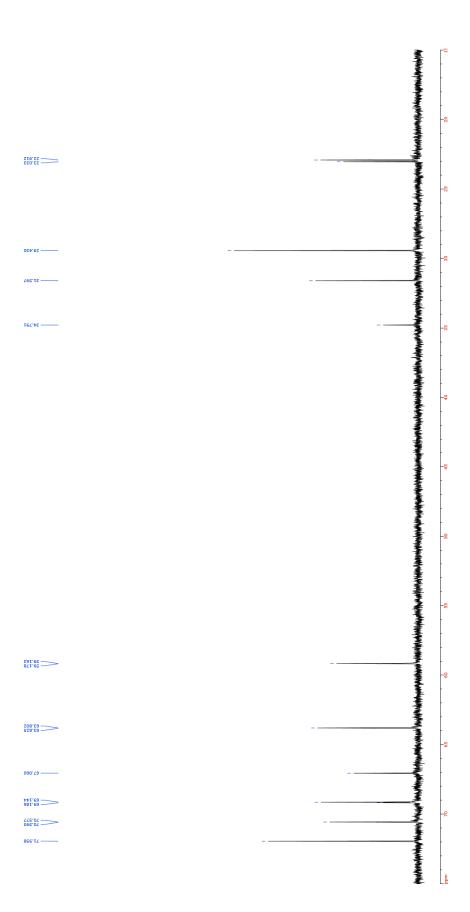

A solution of 2-methoxyethyl 4-acetyl-5-oxohexanoate (3.66 g, 15.9 mmol) in 50 mL of anhydrous tetrahydrofuran was slowly added via cannula to a suspension of sodium hydride (0.38 g, 16.0 mmol) in 100 mL of anhydrous tetrahydrofuran at 0 °C. The resulting solution was stirred for 15 min at 0 °C and then allowed to warm to room temperature where it was stirred for 3 h. VCl₃(thf)₃ (2.00 g, 5.36 mmol) was added to the reaction mixture in a single portion. The resulting dark brown suspension was heated to 90 °C overnight. On the benchtop, the solvent was removed *in vacuo*. The dark brown residue was purified by passage through a 4-inch silica gel plug using 85% $CH_2Cl_2/15\%$ ethyl acetate as the eluent. The solvent was removed under vacuum, and the product was dried overnight at 80 °C to afford 15 as a dark brown tar (1.36 g, 35% yield, 1.88 mmol). The product was stored under an inert atmosphere to prevent oxidation. Elemental analysis calcd. for $C_{33}H_{51}O_{15}V$: C 53.67, H 6.96; found: C 53.61, H 6.91; IR (v, cm⁻¹) = 2890 (v), 2361 (v), 2337 (v), 1278 (v), 1699 (v), 1559 (v), 1456 (v), 1356 (v), 1286 (v), 1242 (v), 1157 (v), 1126 (v), 1030 (v), 983 (v), 14RMS (ESI, positive ion mode) v0 calcd. for v0 calcd. for v0 calcd. for v1 calcd. for v1 calcd. for v2 calcd. for v3 calcd. for v3 calcd. for v3 calcd. for v4 calcd. for v5 calcd. for v6 calcd. for v6 calcd. for v7 calcd. for v8 calcd. for v9 calcd. for


NMR Spectra









Solubility Measurements

The solubility of complexes 1-15 in acetonitrile were determined as per the general procedure outlined in the full paper. The concentration of standard solutions, dilution factors for saturated solutions and wavelengths of absorption for each complex are listed in Table S1.

	λ abs.	Standard Solutions	Saturated Solution	Max. Solubility in
Complex	(nm)	(mM)	Dilutions	MeCN
1	550	1.0, 5.0, 10.0, 20.0	70 μL into 5 mL	$0.653 \pm 0.003 \text{ M}$
2	570	1.0, 5.0, 10.0, 15.0	250 μL into 10 mL	$0.404 \pm 0.002 \text{ M}$
				0.00212 ± 0.00002
3	564	0.05, 0.10, 0.50, 1.00	1.25 mL into 5 mL	M
4	558	1.0, 5.0, 10.0, 20.0	500 μL into 5 mL	$0.0547 \pm 0.0003 \text{ M}$
5	564	1.0, 5.0, 10.0, 20.0	25 μL into 5 mL	$1.92 \pm 0.04 \text{ M}$
6	567	1.0, 5.0, 10.0, 20.0	200 μL into 10 mL	$0.43 \pm 0.02 \text{ M}$
				$5.7 \times 10^{-5} \pm 7 \times 10^{-6}$
7	366	0.02, 0.03, 0.06, 0.13	250 μL into 5 mL	M
				$7.99 \times 10^{-4} \pm 4 \times 10^{-1}$
8	418	0.03, 0.06, 0.13, 0.25	1.25 mL into 5 mL	7 M
9	564	1.0, 5.0, 10.0, 20.0	1 mL into 5 mL	$0.0434 \pm 0.0003 \text{ M}$
10	571	1.0, 5.0, 10.0, 15.0	50 μL into 5 mL	$0.86\pm0.05~M$
11	566	1.0, 5.0, 10.0, 20.0	50 μL into 5 mL	$1.25 \pm 0.01 \text{ M}$
12	572	1.0, 5.0, 10.0, 15.0	50 μL into 5 mL	$1.13 \pm 0.01 \text{ M}$
13	572	1.0, 5.0, 10.0, 15.0	25 μL into 5 mL	$1.80 \pm 0.04 \text{ M}$
15	600	1.0, 5.0, 10.0, 20.0	20 μL into 5 mL	$1.32 \pm 0.04 \text{ M}$

Table S1: Solubility parameters and determinations for complexes 1-13 and 15 in acetonitrile.

Complex	λ abs. (nm)	Experimental ε (cm ⁻¹ ·M ⁻¹)	Literature ε (cm ⁻¹ ·M ⁻¹)
1	550	51.48	72.44 ($\lambda = 560 \text{ nm}, \text{CHCl}_3$) ¹
2	570	45.35	39.81 ($\lambda = 550 \text{ nm}, \text{ EtOH}$) ²
3	564	74.41	83.18 ($\lambda = 570 \text{ nm}, \text{CHCl}_3$) ¹
4	558	71.56	$70.79 (\lambda = 558 \text{ nm}, \text{CHCl}_3)^1$
5	564	65.9	$\sim 80 \ (\lambda = 56 \text{ nm}, \text{ not reported})^3$
6	567	78.56	-
7	366	19012	$28183 \ (\lambda = 360 \ \text{nm}, \text{CHCl}_3)^1$
8	418	6442	-
9	564	76.92	-
10	571	69.30	N/A
11	566	74.64	N/A
12	572	68.66	N/A
13	572	65.91	N/A
15	600	74.51	N/A

Table S2: Experimental extinction coefficients for complexes 1 - 13 and 15 in acetonitrile and a comparison to literature values where appropriate.

X-Ray Structure Determination

Complex 6: Purple blocks of **6** were grown from a hexanes/benzene solution of the complex at 25 °C. A crystal of dimensions 0.18 x 0.08 x 0.07 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode ($\lambda = 1.54187$ A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the crystal. A total of 3805 images were collected with an oscillation width of 1.0° in ω The exposure time was 1 sec. for the low angle images, 4 sec. for high angle. The integration of the data yielded a total of 69181 reflections to a maximum 20 value of 136.48° of which 4837 were independent and 4520 were greater than $2\sigma(I)$. The final cell constants Table S3) were based on the xyz centroids 34219 reflections above 10_o(I). Analysis of the data showed negligible decay during data collection; the data were processed with CrystalClear 2.0 and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/4) software package, using the space group P2(1)/c with Z = 4 for the formula $C_{21}H_{24}N_3O_6Cr$, C_6H_6 . Full matrix least-squares refinement based on F^2 converged at R1 = 0.0354 and wR2 = 0.1012 [based on I > 2sigma(I), R1 = 0.0400 and wR2 = 0.1195 for all data. Additional details are presented in Table S3 and are given as Supporting Information in a CIF file.

Identification code	Complex 5
Empirical formula	C ₂₇ H ₃₀ Cr N ₃ O ₆
Formula weight	544.54
Temperature	85(2) K
Wavelength	1.54178 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	$a = 12.7622(16) \text{ A}, \alpha = 90 ^{\circ}$
	b = 15.3268(3) A, β = 114.351(9) °
	$c = 14.8815(11) \text{ A}, \gamma = 90 ^{\circ}$
Volume	2651.9(4) A ³
Z, Calculated density	4, 1.364 Mg/m ³
Absorption coefficient	3.935 mm ⁻¹
F(000)	1140
Crystal size	0.18 x 0.08 x 0.07 mm
Theta range for data collection	4.35 to 68.24 °
Limiting indices	-15≤h≤15, -18≤k≤18, -17≤l≤16
Reflections collected / unique	69181 / 4837 [R(int) = 0.0681]
Completeness to theta = 68.24	99.90%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7702 and 0.5377
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4837 / 0 / 340
Goodness-of-fit on F ²	1.181
Final R indices [I>2sigma(I)]	R1 = 0.0354, $wR2 = 0.1012$
R indices (all data)	R1 = 0.0400, wR2 = 0.1195
Largest diff. peak and hole	0.304 and -0.577 e.A ⁻³
Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 68.24 Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	4, 1.364 Mg/m^3 3.935 mm^{-1} 1140 $0.18 \times 0.08 \times 0.07 \text{ mm}$ 4.35 to 68.24 ° $-15 \leq h \leq 15, -18 \leq k \leq 18, -17 \leq l \leq 16$ $69181 / 4837 \text{ [R(int)} = 0.0681]}$ 99.90% Semi-empirical from equivalents 0.7702 and 0.5377 Full-matrix least-squares on F ² 4837 / 0 / 340 1.181 R1 = 0.0354, wR2 = 0.1012 R1 = 0.0400, wR2 = 0.1195

Table S3: Crystal data and structure refinement for complex **5**.

Complex 8: Green blocks of complex 8 were grown from a chloroform/hexanes solution at 25 °C. A crystal of dimensions 0.13 x 0.12 x 0.07 mm was mounted on a Bruker SMART APEX-I CCD-based X-ray diffractometer equipped with a low temperature device and fine focus Mo-target X-ray tube ($\lambda = 0.71073$ A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(1) K; the detector was placed at a distance 5.070 cm from the crystal. A total of 4460 frames were collected with a scan width of 0.5° in ω and 0.45° in phi with an exposure time of 30 s/frame. The integration of the data yielded a total of 87026 reflections to a maximum 20 value of 74.16° of which 14372 were independent and 10727 were greater than $2\sigma(I)$. The final cell constants (Table S4) were based on the xyz centroids of 9870 reflections above 10 σ (I). Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/4) software package, using the space group P1bar with Z = 2 for the formula $C_{35}H_{29}O_6Cr$. All nonhydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F^2 converged at R1 = 0.0468 and wR2 = 0.1090 [based on I > 2sigma(I)], R1 = 0.0722 and wR2 = 0.1231 for all data. Additional details are presented in Table S4 and are given as Supporting Information in a CIF

Identification code	Complex 8
Empirical formula	C ₃₅ H ₂₉ Cr O ₆
Formula weight	597.58
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 10.1881(2) \text{ A}, \alpha = 94.4750(10) ^{\circ}$
	$b = 10.8140(2) \text{ A}, \beta = 92.6810(10) ^{\circ}$
	$c = 13.9887(3) A, \gamma = 112.3820(10) ^{\circ}$
Volume	1415.84(5) A ³
Z, Calculated density	$2, 1.402 \text{ Mg/m}^3$
Absorption coefficient	0.451 mm ⁻¹
F(000)	622
Crystal size	0.13 x 0.12 x 0.7 mm
Theta range for data collection	2.05 to 37.08 °
Limiting indices	-17≤h≤17, -18≤k≤18, -23≤l≤23
Reflections collected / unique	87026 / 14372 [R(int) = 0.0702]
Completeness to theta $= 37.08$	99.20%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9691 and 0.9436
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	14372 / 0 / 381
Goodness-of-fit on F ²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0468, wR2 = 0.109
R indices (all data)	R1 = 0.0722, $wR2 = 0.1231$
Largest diff. peak and hole	0.867 and -0.419 e.A ⁻³

Table S4: Crystal data and structure refinement for complex **8**.

Complex 9: Orange blocks of complex 9 were grown from a chloroform/hexanes solution of the complex at 25 °C. A crystal of dimensions 0.18 x 0.14 x 0.13 mm was mounted on a Bruker SMART APEX-I CCD-based X-ray diffractometer equipped with a low temperature device and fine focus Mo-target X-ray tube ($\lambda = 0.71073$ A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(1) K; the detector was placed at a distance 5.070 cm from the crystal. A total of 2425 frames were collected with a scan width of 0.5° in ω and 0.45° in phi with an exposure time of 30 s/frame. The integration of the data yielded a total of 223213 reflections to a maximum 2θ value of 56.64° of which 28072 were independent and 17169 were greater than $2\sigma(I)$. The final cell constants (Table S5) were based on the xyz centroids of 9951 reflections above 10σ(I). Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/4) software package, using the space group P2(1)/n with Z=20 for the formula C₂₅H₂₅O₆Cr. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F² converged at R1 = 0.0587 and wR2 = 0.1446 [based on I > 2 sigma(I)], R1 = 0.1040 and wR2 = 0.1774 for Additional details are presented in Table S5 and are given as Supporting Information in a CIF file.

Identification code	Complex 8
Empirical formula	C ₂₅ H ₂₅ Cr O ₆
Formula weight	473.45
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	$a = 23.612(2) \text{ A}, \alpha = 90 ^{\circ}$
	$b = 14.2939(13) \text{ A}, \beta = 95.048(2) ^{\circ}$
	$c = 33.570(3) \text{ A}, \gamma = 90 ^{\circ}$
Volume	$11286.3(18) A^3$
Z, Calculated density	20, 1.393 Mg/m ³
Absorption coefficient	0.545 mm ⁻¹
F(000)	4940
Crystal size	0.18 x 0.14 x 0.13 mm
Theta range for data collection	1.01 to 28.32 °
Limiting indices	-31≤h≤31, -19≤k≤19, -44≤l≤44
Reflections collected / unique	223213 / 28072 [R(int) = 0.0790]
Completeness to theta = 28.32	99.90%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9325 and 0.9082
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	28072 / 0 / 1461
Goodness-of-fit on F ²	1.017
Final R indices [I>2sigma(I)]	R1 = 0.0587, wR2 = 0.1446
R indices (all data)	R1 = 0.1040, wR2 = 0.1774
Largest diff. peak and hole	1.375 and -0.414 e.A ⁻³

Table S5: Crystal data and structure refinement for complex 9.

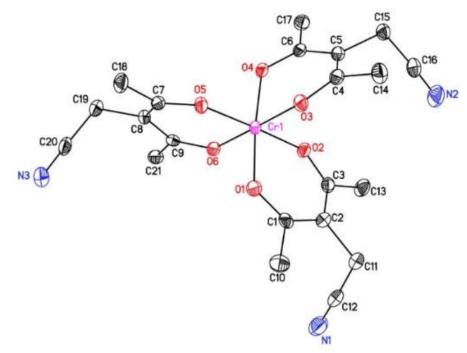


Figure S1: X-ray crystal structure of complex 6.

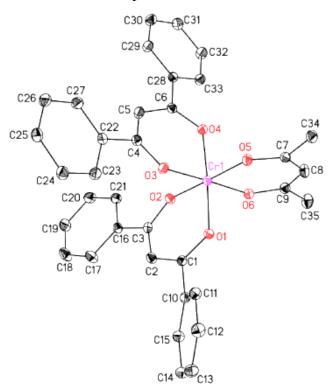
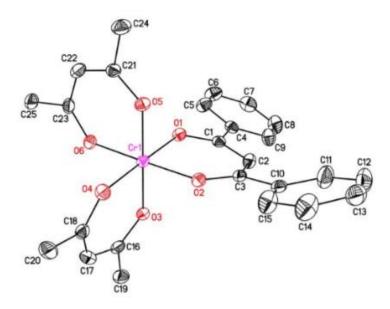
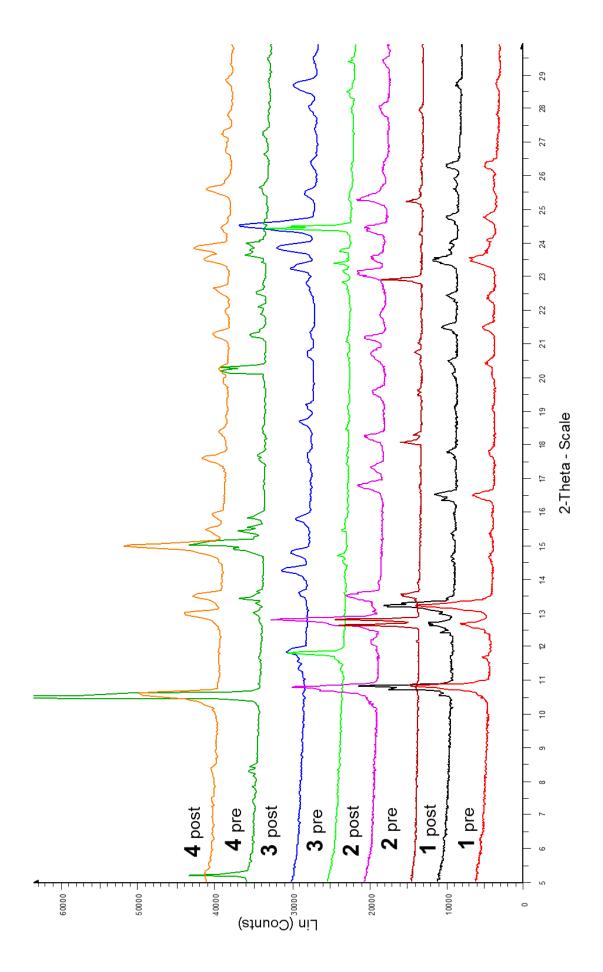
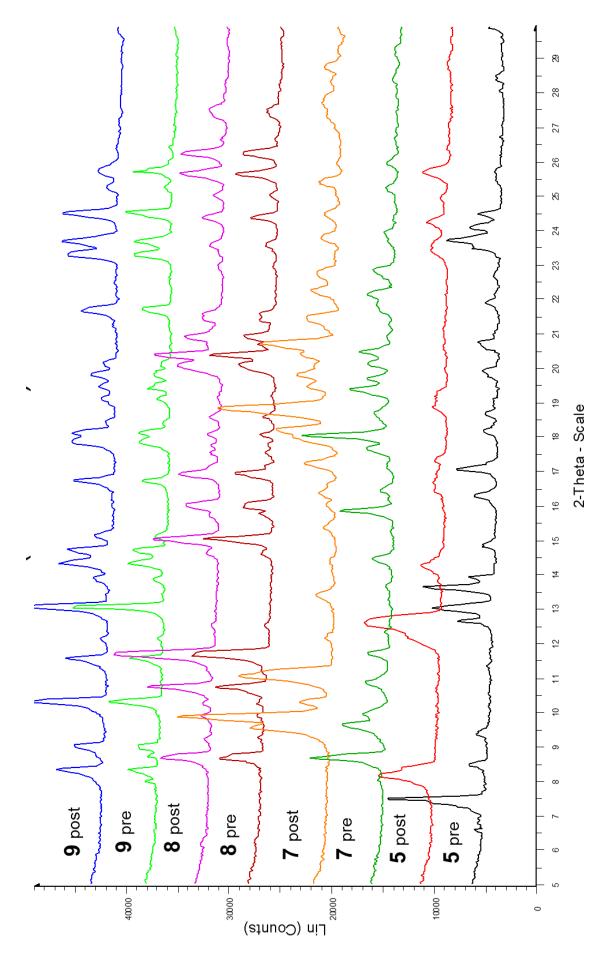
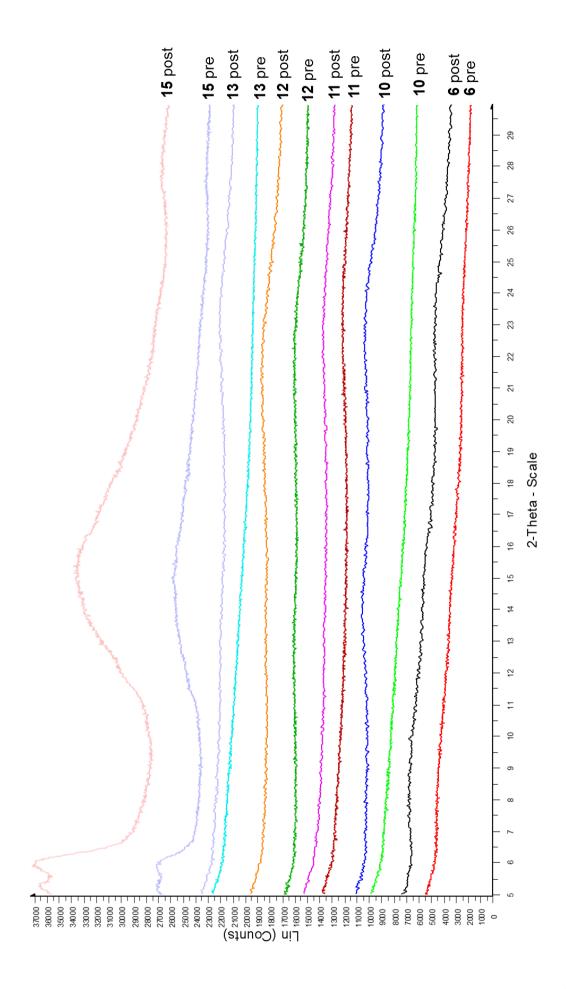
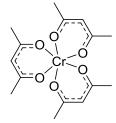


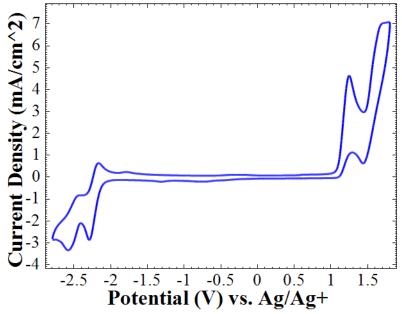
Figure S2: X-ray crystal structure of complex 8.

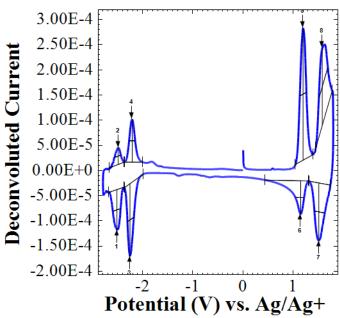




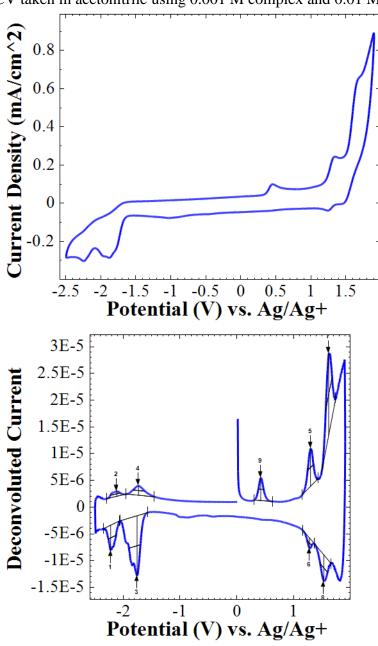

Figure S3: X-ray crystal structure of complex 9.

Powder X-ray Diffraction Patterns

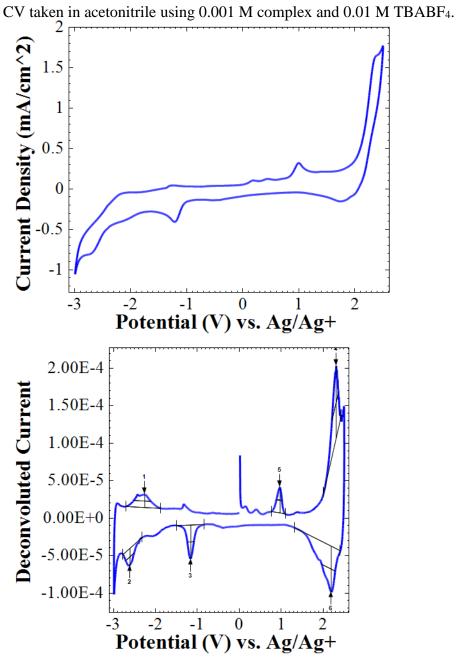

PXRD data were recorded at room temperature on a Bruker AXS D8 Advance powder diffractometer at 40 kV, 40 mA with a CuK α source (λ =1.5406 Å) between 5 and 30° 20 with a scan speed of 0.1 s/ step and a step size of 0.04. Samples were measured on a glass microscope slide in an aluminum holder.

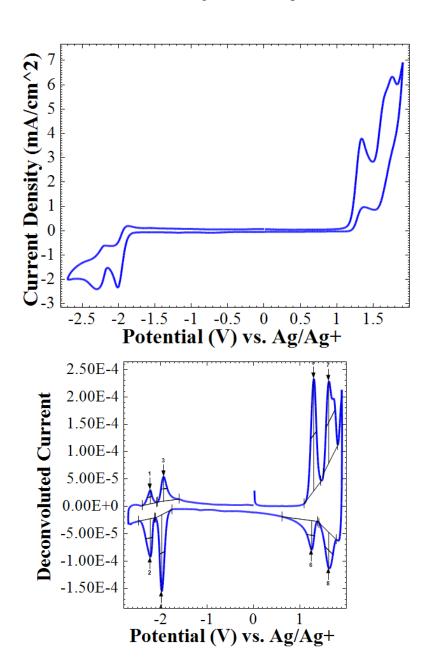


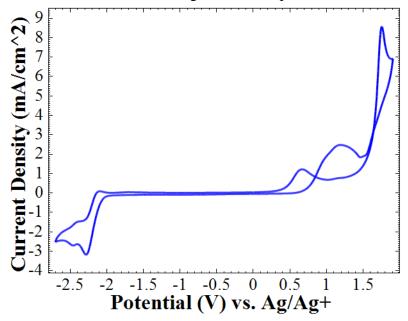


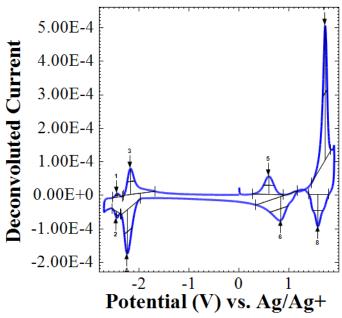


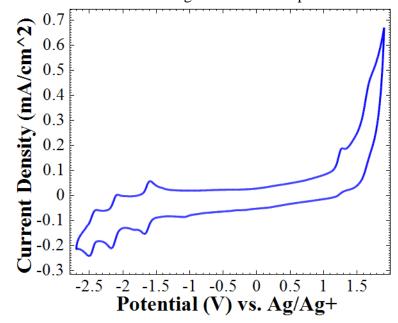
Cyclic Voltammograms

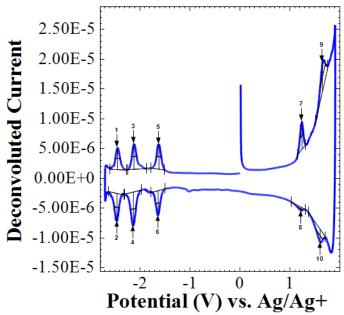


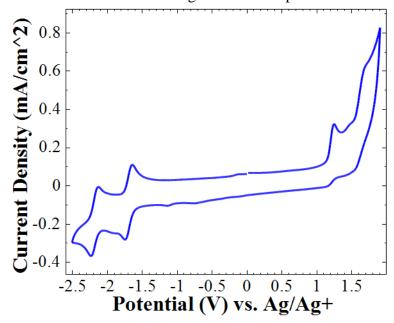


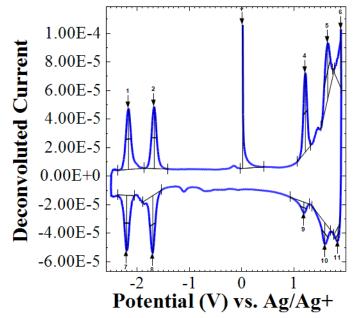


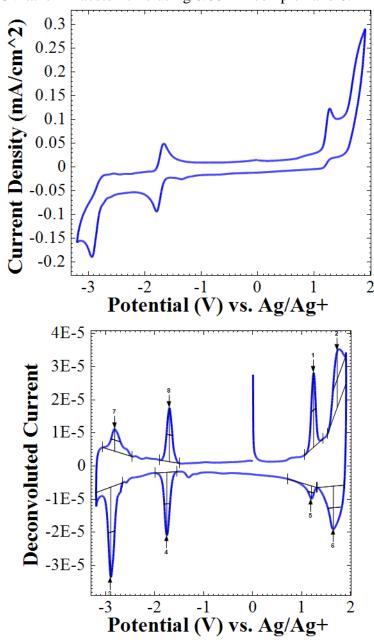

$$O_2N$$
 O_2
 O_2N
 O_2
 O_2
 O_2
 O_2
 O_2
 O_2
 O_2
 O_3
 O_4
 O_2

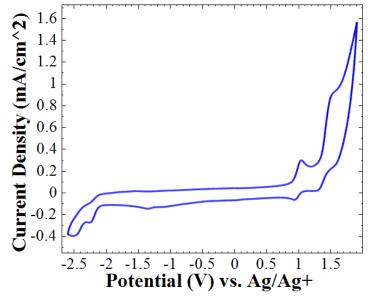


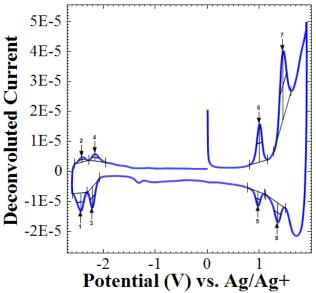


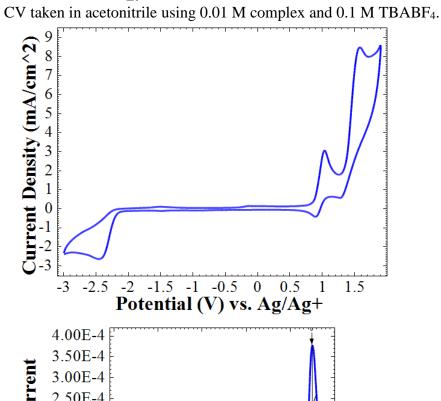

$$\begin{array}{c|c} & \text{Me}_2\text{N} \\ & \text{O} \\ & \text{Cr} \\ & \text{O} \\ & \text{NMe}_2\text{N} \end{array}$$

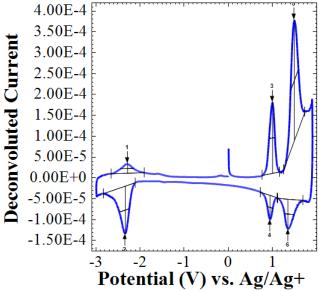


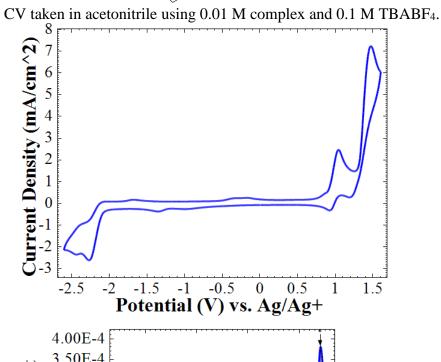


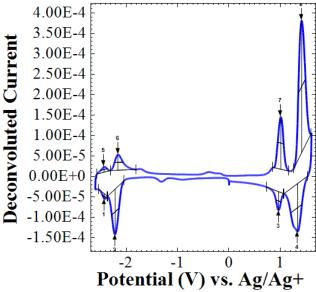


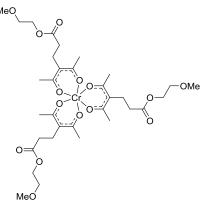


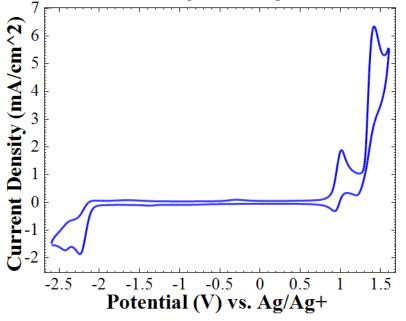


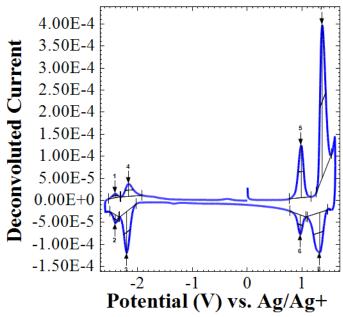


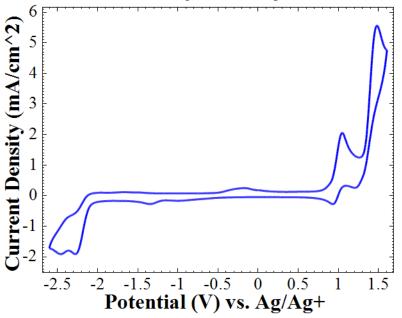


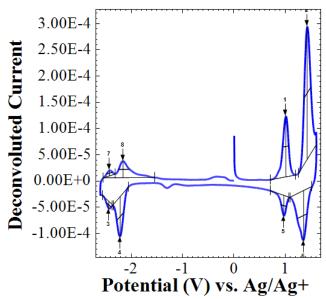


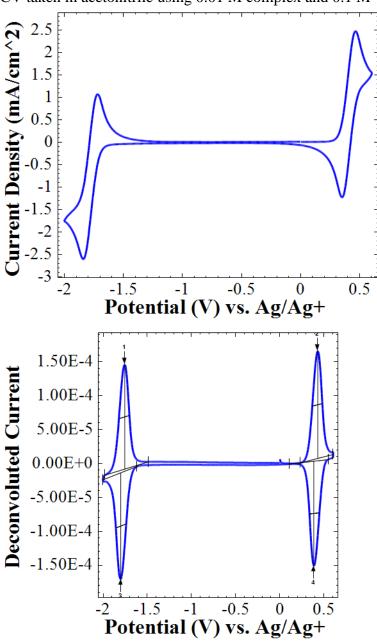


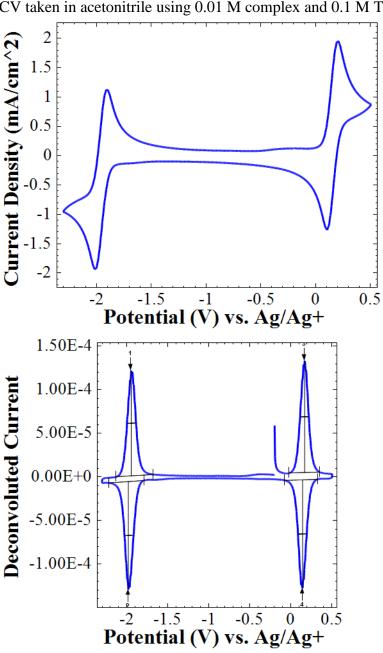




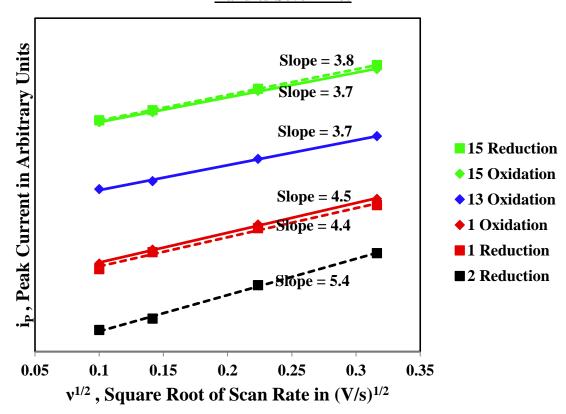


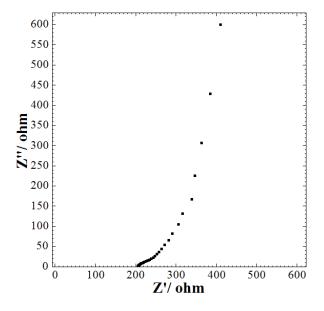






 $\widetilde{\text{CV}}$ taken in acetonitrile using 0.01 M complex and 0.1 M TBABF₄.





Randles-Sevcik Plot

Figure S4: Plot of peak current (adjusted to increase separation) versus square root of the scan rate. Diamonds are for oxidation reactions, and squares are for reduction reactions. Linear fitting lines are solid for oxidation reactions and dashed for reduction reactions. Reduction peak currents are not available for **13** and oxidation peak currents are not available for **2**, due to irreversible reactions.

Figure S5: EIS Nyquist plot of H-cell with 0.5M TBABF₄ from 0.01-1x10⁶ Hz at open circuit potential. $R_S = 206\Omega$.

References

- 1. P. R. Singh and R. Sahai, Aust. J. Chem. 1969, 22, 1169-1175.
- 2. D. W. Barnum, J. Inorg. Nucl. Chem. 1961, 21, 221-237.
- 3. K. B. Takvorian and R. H. Barker, *Inorganic Syntheses* 1970, **12**, 85-88.