Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Parametric Investigation of Room-temperature Fluoride-ion Batteries: Assessment of Electrolytes, Mg-based Anodes, and BiF₃-Cathodes

Fabienne Gschwind*a,b and Joshua Bastiena,b

^a Helmholtz-Institute Ulm (HIU), Albert-Einstein-Allee 11, 89081 Ulm, Germany

Tel: +49 (0)731 50 34212, Fax: +49 (0)731 50 34299

E-mail: fabienne.gschwind@kit.edu

^b Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,

Germany. Tel: +49 (0)721 60 828972

Figure S1: SEM/EDX of separator fibers (whatsman filter)	2
Figure S2: IR spectra of the three electrolyte; TG, Hi and PEO with	
ammonium bifluoride as reference	3
Figure S3: PXRD of two typical BiF ₃ -cathode after discharge	4
Figure S4: BiF ₃ -cathode supplemental SEM/EDX measurement	5
Figure S6: Mg/PANI composite electrode, first discharge capacity,	
with three different electrolyte; TG, Hi and PEG6000	7
Fig. S7: Results from ICP-OES measurement, content of Mg ions and	
Na ion in the separators	8
Fig. S8: ¹⁹ F-NMR Data for the new compounds and for the diluted electrolyte	
Hi and TG	9
Fig. S9: SEM picture of passivated Mg anode: Heavy curst formation	10

Figure S2: IR spectra of the three electrolyte; TG (1), Hi (2) and PEO (3) with ammonium bifluoride as reference

partial conversion of BiF3 to Bi after cycling

Figure S4: BiF₃-cathode supplemental SEM/EDX measurement

Figure S6: Mg/PANI composite electrode, first discharge capacity, with three different electrolytes; TG(1), Hi(2) and PEG6000(E)

Results from ICP-OES measurement, content of Mg ions and Na ion in the separators

Prüfergebnisse:

Probenbezeichnung		Magnesium	Natrium
Auftraggeber	Labornummer	mg/l	mg/l
Referenz II 2	SP 346/14	2.5	14.1

DIN EN ISOKationen:11885Bestimmungsgrenze:0,1 mg/l

¹⁹F-NMR Data for the new compounds and for the diluted electrolyte Hi and TG

Fig. S9: SEM picture of passivated Mg anode: Heavy curst formation

Different Anode: Mg foil: Heavy crust formation of MgF2 onto the anode surface