Supporting information

Preparation of mesoporous Cu-Mn/TiO₂ composites for degradation of Acid Red 1

Hongyang Min,‡^{*a*} Xianqiang Ran,‡^{*a*} Jianwei Fan,*^{*ab*} Yu Sun,^{*c*} Jianping Yang,^{*ad*} Wei Teng,*^{*a*} Wei-xian Zhang,^{*a*} Guangming Li^{*a*} and Dongyuan Zhao^{*b*}

^a College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, No. 1239, Siping Road, Shanghai 200092, P.
R. China.

^b Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China.

^c Shanghai Tongji Clearon Environmental-Protection Equipment Engineering Co., Ltd, Shanghai 200092, P. R. China.

^{*d*} Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia.

*E-mail address: fanjianwei@tongji.edu.cn (Dr. Jianwei Fan)

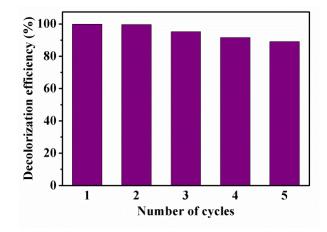
wteng@tongji.edu.cn (Dr. Wei Teng)

Tel: +86-21-65982658

Fax: +86-21-65985157

‡ These authors contributed equally to this work.

	Decolorization efficiency	Content (wt.%)		
	(%)	Cu	Mn	Ti
L-Cu-Mn/TiO ₂	89	2.4	2.5	57.2
Cu-Mn/TiO ₂	99	5.7	6.0	50.6
H-Cu-Mn/TiO ₂	24	9.7	10.1	45.0


Table S1. The atomic contents and catalytic performance of the mesoporous $Cu-Mn/TiO_2$ catalysts with different

Cu and Mn loadings ($C_{catalyst} = 0.6 \text{ g/L}$, $C_{H_2O_2} = 126.4 \text{ mM}$, T = 70 °C, PH = 6.7).

Number	Molecular formula	m/z
1	OH HN CH ₃ H ₂ N CH ₃ -O ₃ S SO ₃ -	374
2	H_2N H_2N O_3S SO_3^-	332
3	-O ₃ S SO ₃ -	302
4	H ₂ N COOH O ₃ S OH COOH	292
5	ОН СООН	182

Table S2. Compounds identified by LC-MS during the degradation of Acid Rea 1 by AOPs.

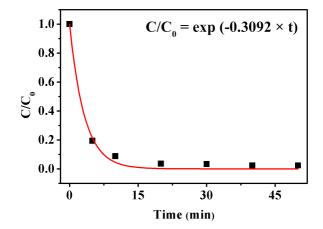

Fig. S1. Reusability study of mesoporous Cu-Mn/TiO₂ catalyst ($C_{catalyst} = 1.0 \text{ g/L}$, $C_{H_2O_2} = 126.4 \text{ mM}$, T = 70 °C, PH = 6.7).

Fig. S2. Effect of initial pH ($C_{catalyst} = 0.6 \text{ g/L}$, $C_{H_2O_2} = 126.4 \text{ mM}$, T = 70 °C) (A), catalyst dosage ($C_{H_2O_2} = 126.4 \text{ mM}$, T = 70 °C, pH = 6.7) (B), H₂O₂ concentration ($C_{catalyst} = 0.6 \text{ g/L}$, T = 70 °C, pH = 6.7) (C) and reaction temperature ($C_{catalyst} = 0.6 \text{ g/L}$, $C_{H_2O_2} = 126.4 \text{ mM}$, pH = 6.7) (D) on the degradation of Acid Red 1 solution by using the mesoporous Cu-Mn/TiO₂ as a catalyst.

Fig. S3. The pseudo-first order exponential relationship for reaction kinetic curve ($C_{catalyst} = 0.6 \text{ g/L}$, $C_{H_2O_2} = 126.4 \text{ mM}$, T = 70 °C, pH = 6.7).

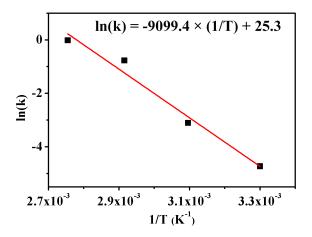
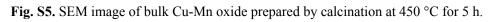
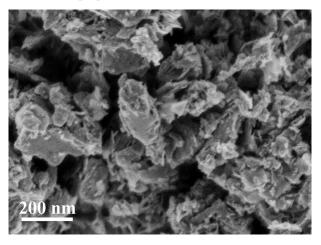




Fig. S4. Arrenhius plot for the pseudo-first order kinetic constant of the model.

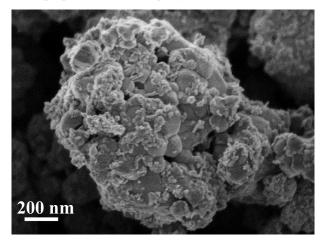


Fig. S6. SEM image of Cu-Mn/P25 prepared via wet-impregnation and calcination at 450 $^\circ$ C for 5 h.

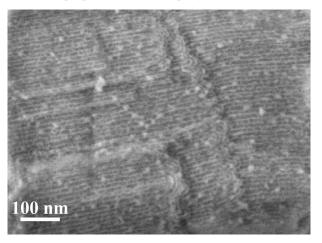
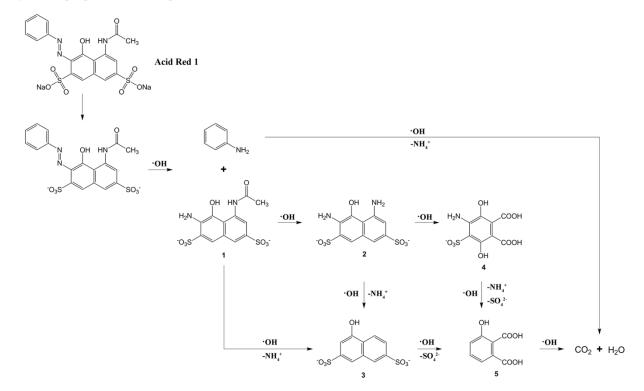



Fig. S7. SEM image of Cu-Mn/SBA-15 prepared via wet-impregnation and calcination at 450 °C for 5 h.

Fig. S8. A proposed reaction pathway of degradation of Acid Red 1.

