Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

O3-Na_xMn_{1/3}Fe_{2/3}O₂ as positive electrode material for Na-ion batteries: Structural Evolutions and Redox Mechanisms upon Na⁺ (De)intercalation

B. Mortemard de Boisse,^a J.-H. Cheng,^{a,b} D. Carlier,*^a M. Guignard,^a C.-J. Pan,^b S. Bordère,^a

D. Filimonov,^c C. Drathen,^d E. Suard,^e B.-J. Hwang,^{b,f} A. Wattiaux^a and C. Delmas^a

^a CNRS, Université de Bordeaux, ICMCB, 33608 Pessac Cedex, France.

^b Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST), Taipei 106, Taiwan.

^c Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia.

^d ESRF, 6 rue Jules Horowitz BP 220, 38043 Grenoble, France.

^e Institut Laue-Langevin, 71 Avenue des Martyrs, F-38000 Grenoble, France.

^fNational Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan.

Figure S1. Observed and calculated (Rietveld method) (a) X-ray and (b) Neutron powder diffraction patterns for the "O3-Na_{0.82}Mn_{1/3}Fe_{2/3}O₂" starting phase at room temperature. Red crosses: experimental, black line: calculated, blue line: difference and green bars: Bragg positions.

		X-ray diffraction			Neutron diffraction	
Cell parameters (S.G.: R-3m)	$a_{hex.}$ (Å)	2.9804(1)				
	$c_{hex.}$ (Å)	16.3249(2)				
Wavelength (Å)		Cu ka _{1,2}			1.59319(4)	
Atomic parameters:		X	у	Z	Occ	ADP (Å ²)
	Na (3b)	0	0	1/2	0.79(1)	1.54(3)
	Mn (3a)	0	0	0	0.32(1)	0.50(1)
	Fe (3a)	0	0	0	0.68(1)	
	O (6c)	0	0	0.269(1)	1	0.87(1)
R _{wp} (%)		2.07			6.75	
Global R _{wp} (%)		3.52				

Table S1: Structural parameters and reliability factors calculated from the combined refinement of the X-ray and Neutron powder diffraction patterns.

Figure S2. Galvanostatic cycling curve recorded at C/50 between 1.5 and 3.8 V with the VC electrolyte additive.

Figure S3. SEM micrographs of (a,b) an un-cycled electrode involving the O3-Na_{0.77}Mn_{1/3}Fe_{2/3}O₂ material and similar electrodes cycled 50 times (c,d) between 1.5 and 3.8 V, (e,f) between 1.5 and 4.0 V and (g,h) between 1.5 and 4.3 V.

Figure S4. Inversed representation of Figure 5. (a) XRPD patterns recorded *in operando* during the charge of a $Na_xMn_{1/3}Fe_{2/3}O_2/NaPF_6$ in PC (1M)/Na cell along with (b) the corresponding galvanostatic curve. Blue Miller indexes: O3 and P3 phases. Black Miller indexes: O'3 phase.

Figure S5. (left) XRPD patterns recorded *in* situ during the relaxation of a $Na_xMn_{1/3}Fe_{2/3}O_2/NaPF_6$ in PC (1M)/Na cell along with (right) the corresponding galvanostatic GITT curves.

Figure S6. Magnifications in the 0.1 < x < 0.7 region of the *operando* XRPD patterns recorded during the charge of the Na_xMn_{1/3}Fe_{2/3}O₂/NaPF₆ in PC (1M)/Na cell presented in Figures 5 and S3. The red lines highlight the limitations of the solid solutions and / or biphasic domains.

Figure S7. XRPD pattern of the electrode made of $Na_xMn_{1/3}Fe_{2/3}O_2$, carbon black and polytetrafluoroethylene (PTFE) recovered after charge to 4.3 V and discharge to 1.5 V. The aluminum diffraction peak arises from the sample holder.

Figure S8. Superposition of the Mössbauer spectra corresponding to (a) the x = 0.96 (black line), x = 0.86 (red line) and x = 0.67 (blue line) compositions and to (b) the x = 0.96 (black line), x = 0.58 (green line) and x = 0.38 (pink line) compositions.