Supplementary Information

Electrochemical performance of rod-like Sb-C composite as anodes for Li-ion

and Na-ion batteries

Long Fan ^a, Jingjing Zhang ^a, Jianhua Cui ^{a, b}, Yongchun Zhu ^{a, *}, Jianwen Liang ^a,

Lili Wang ^a, and Yitai Qian ^{a, c, *}

a Department of Chemistry, University of Science and Technology of China, Hefei,

Anhui, 230026, PR China

b Department of Chemistry, Taishan Medical University, Taian ,Shandong,271016,

PR China

c School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China

*Corresponding author: Yong-Chun Zhu, E-mail: <u>ychzhu@ustc.edu.cn;</u>

Yi-Tai Qian, E-mail: ytqian@ustc.edu.cn

Experimental

Preparation of Sb₂O₃ microrods precursor.

In a typical synthesis, 2 mmol SbCl₃ was dissolved into 30 mL of ethanol under magnetic stirring. Then, 18 ml 1M NaOH solution was dropwise added to the above mixture. After continually stirred for 1 h, the solution was transferred into a Teflon-lined autoclave and kept at 150 °C for 24 h. After cooled to ambient temperature, the resulting products were collected by centrifugation, washed with distilled water and absolute ethanol, and dried under vacuum at 50 °C for 12 h.

Preparation of rod-like Sb-C composite.

Rod-like Sb-C composite was prepared by thermal annealing C_2H_2 with the corresponding Sb_2O_3 _

precursor. The dried Sb_2O_3 precursor was annealed in a electric furnace at 480 °C under continuous $C_2H_2/argon$ gas flow (1/9; v/v) for 16 h with the heating rate of 3 °C min⁻¹. After cooled to ambient temperature, the product was then collected for further characterization.

Material characterization.

The X-ray powder diffraction (XRD) patterns of the products were characterized by a Philips X' pert X-ray diffractometer with Cu Ka radiation (λ =1.541874Å). Raman spectra were collected on a JYLABRAM-HR Confocal Laser Micro-Raman spectrometer at room temperature. The carbon content was measured on a vario EL-III elemental analyzer. The structure and morphology of the samples were observed by a field emission scanning electron microscope (SEM, JEOL-JSM-6700F) and transmission electron microscope (TEM, H7650).

Electrochemical measurements.

The working electrode was composed of the active material, carbon black and polyvinylidene difluoride (PVDF) in a weight ratio of 70:20:10. The electrode was prepared by casting the slurry onto copper foil and drying in a vacuum oven at 100 °C for 12 h. The mass of the active material was around 2 mg cm⁻¹. Li-ion batteries were assembled with lithium as the counter electrode, 1.0 M LiPF₆ in a mixture of ethylene carbonate/diethyl carbonate (EC/DMC = 1/1, V/V) as the electrolyte and a porous polypropylene membrane (Celgard 2400) as the separator. Na-ion batteries were also fabricated at the same conditions using sodium as the counter electrode, 1.0 M NaClO₄ in a mixture of ethylene carbonate/diethyl carbonate (EC/DMC = 1/1, V/V) as electrolyte solution, and a glass fiber (GF/D) from Whatman as the separator. Electrochemical performance was tested using a Land-CT2001A battery test station in the voltage range of 0.01 - 2.5 V. Capacity was calculated on the basis of the total mass of the Sb-C composite. Cyclic voltammogramsats (CV) with a scan rate of 0.1 mV s⁻¹ between 0.01 and 2.0 V were recorded using a CHI650A electrochemical workstation.

Fig. S1. XRD patterns of Sb₂O₃ microrods precursor.

Fig. S2. SEM images of Sb₂O₃ microrods precursor and rod-like Sb-C composite.

Fig. S3 N_2 adsorption-desorption isotherms and pore size distributions of Sb_2O_3 precursor

Table. S1 Comparison of rod-like Sb-C composite (this work) and various reported Sb-C as anodes for Li-ion or Na-ion batteries.

	Reversible	Rate	Batteries	Ref.
Material	capacity/mAh g ⁻¹	(mA g ⁻¹)		
Rod-like Sb-C composite	478.8/100th cycles	100	Li-ion	This work
Hollow Sb Nanoparticles	615/100th cycles	120	Li-ion	[22]
Sb nanoparticles	120/70th cycles	120	Li-ion	[23]
Sb nanowires	200/70th cycles	120	Li-ion	[23]
Sb-carbon nanocomposite	550/250th cycles	230	Li-ion	[24]
Rod-like Sb-C composite	430.9/100th cycles	50	Na-ion	This work
Sb/C nanocomposite	400/60th cycles	100	Na-ion	[25]
Sb/C Fibers	350/300th cycles	100	Na-ion	[26]
Sb-C nanofibers	446/400th cycles	200	Na-ion	[27]
Sb-carbon microspheres	372/300th cycles	300	Na-ion	[28]