Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Construction of Reduced Graphene Oxide-Supported Ag-Cu₂O composites with Hierarchical Structures for Enhanced Photocatalytic Activities and Recyclability

Li Xu, Fengying Zhang, Xinyu Song*, Zhilei Yin, Yuxiang Bu

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

Fig. S1 TGA curves of the Ag-Cu₂O/rGO (G5-8.4) nanocomposites and GO in air.

Fig. S2 XPS spectra of the C 1s peaks for GO (a) and Ag-Cu₂O/rGO NCs (b); the Cu 2p peaks for Ag-Cu₂O and Ag-Cu₂O/rGO NCs (c-e).

Fig. S3 TEM images of (a) pure Cu_2O microsphere, (b) Cu_2O/rGO nanocomposites and (c) Ag- Cu_2O nanocomposites.

Fig. S4 TEM images of (a) the obtained sample: by first mixing spherical Cu₂O with GO and Ag, followed by reduction with hydrazine. (b) Ag-rGO-Cu₂O: add the total dosage of hydrazine hydrate once rather than two times.

Scheme 1. Schematic graph of the formation process of the spherical Ag-Cu₂O/rGO

Fig. S5 TEM images of the Ag-Cu₂O/rGO composites prepared at different stages: (a) formation process of sphere-like Cu₂O/rGO (step I), (b) mixing of the AgNO₃ and Cu₂O/rGO (step II), (c) formation sphere-like Ag-Cu₂O on rGO (step III).

Fig. S6 The UV-vis absorption spectra of pure Cu₂O nanocrystals, Ag-Cu₂O composites, Ag-Cu₂O/rGO (G3-1.8) nanocomposites, respectively.

Fig. S7 SEM images of Ag-Cu₂O/rGO NCs with increasing amounts of Ag: (a) 6.4Ag-S1, (b) 12Ag-S2 and (c) 17Ag-S3.

Fig. S8 XRD patterns for the Ag-Cu₂O/rGO (G3-1.8) NCs photocatalyst (a) before and (b) after the recycling experiment.

Fig. S9 Photocatalytic degradation of MO under visible light irradiation at 25 $^{\circ}$ C with different catalysts: Ag-rGO-Cu₂O NCs and Ag-Cu₂O/rGO (G5-8.4) NCs.

Fig. S10 N_2 adsorption-desorption isotherm and corresponding pore-size distribution curves (inset) of the obtained pure Cu₂O, Cu₂O/rGO NCs, Ag-Cu₂O NCs and Ag-Cu₂O/rGO (G3-1.8) NCs.

Fig. S11 The curves of adsorption and photodegradation of MO under visible light irradiation at 25°C with different catalysts: pure Cu₂O, Cu₂O/rGO NCs, Ag-Cu₂O NCs and Ag-Cu₂O/rGO (G3-1.8) NCs, respectively.

Fig. S12 PL spectra of Ag-rGO-Cu₂O NCs and Ag-Cu₂O/rGO (G5-8.4) NCs with the excitation wavelength of 325 nm.

Table S1 The BET surface area, pore volume and average pore size of (a) pure Cu₂O, (b) Cu₂O/rGO NCs, (c) Ag-Cu₂O NCs and (d) Ag-Cu₂O/rGO NCs

sample	Cu ₂ O	Cu ₂ O/rGO	Cu ₂ O-Ag	Cu ₂ O-Ag/rGO
$S_{\rm BET}({ m m}^2{ m g}^{-1})$	8.80	9.16	13.25	14.41
Pore volume $(cm^3 g^{-1})$	0.058	0.068	0.069	0.083
Average pore size (nm)	22.6	31.7	23.5	18.3

Type of catalysts	Light source	Pollutants (ρ/V) (mg• L ⁻¹ /mL)	Catal ysts (mg)	Results	Ref.
26(18)-facet Cu ₂ O polyhedra	Decomposing MO under visible light	15 /100	50	DP of 96% after 3 h	1
Cu ₂ O/PA/rGO	Decomposing MO under visible light	30/20	10	DP of 95% after 3 h	2
Cu ₂ O/Ag	Decomposing MO under visible light	30/100	30	DP of 75.34% after 110 min	3
Cu ₂ O-Au	Decomposing MO under visible light	32.73/20	4	DP of 91% after 2 h	4
Cu ₂ O/titanate	Decomposing MO under visible light	32.73/50	50	DP of about 95 % after 2.5h	5
Fe ₃ O ₄ @C@Cu ₂ O composites	Decomposing MO under visible light	32.73/50	50	DP of about 95% after 2.5 h	6
Ag-Cu ₂ O/rGO	Decomposing MO under visible light	32/50	10	DP of 95% after 1 h	Our work

 Table S2 The Degradation Effect of Different Photocatalysts Reported in the

 Following references

References

1 Y. Zhang, B. Deng, T. Zhang, D. Gao and A.-W. Xu, J. Phys. Chem. C., 2010, 114, 5073.

2 M. Wang, J. Huang, Z. Tong, W. Li and J. Chen, J. Alloys Compd., 2013, 568, 26-35.

3 W. Zhang, X. Yang, Q. Zhu, K. Wang, J. Lu, M. Chen and Z. Yang, *Ind. Eng. Chem. Res.*, 2014, **53**, 16316-16323.

4 H. Zhu, M. Du, D. Yu, Y. Wang, L. Wang, M. Zou, M. Zhang and Y. Fu, *J. Mater. Chem. A*, 2013, **1**, 919.

5 Y. Liu, G. Yang, H. Zhang, Y. Cheng, K. Chen, Z. Peng and W. Chen, RSC Adv.,

2014, **4**, 24363.

6 S.K. Li, F.Z. Huang, Y. Wang, Y.H. Shen, L.G. Qiu, A.J. Xie and S.J. Xu, J. Mater. Chem., 2011, 21, 7459.