Quasi-1D Hyperbranched WO₃ Nanostructures for Low Voltage Photoelectrochemical Water-Splitting

Mehrdad Balandeh,^{1,2,†} Alessandro Mezzetti,^{1,3,†} Alessandra Tacca,⁴ Silvia Leonardi,¹ Gianluigi Marra,⁴ Giorgio Divitini,⁵ Caterina Ducati,⁵ Laura Meda,⁴ Fabio Di Fonzo.^{1,‡}

¹ Center for Nano Science and Technology@PoliMI, Istituto Italiano di Tecnologia, Via Giovanni Pascoli 70/3, 20133 Milano, Italy

² Dipartimento di Energia, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

³ Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

⁴ Eni S.p.A., Istituto ENI Donegani, Via Giacomo Fauser 4, 28100 Novara, Italy

⁵ Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, Cambridge, United Kingdom

SUPPORTING INFORMATION

Figure S1. Power efficiency curves of the HYP (a) and HIE (b) samples as a function of thickness.

Figure S2. IPCE curves of the HYP (a) and HIE (b) samples as a function of thickness measured by shining light from the glass side and with an applied bias of 1 V vs RHE.

Figure S3. Chronoamperometry of the 5- μ m-thick HYP sample performed for 6 hours under standard AM 1.5G illumination with the sample immersed in an aqueous solution of 1 M sulfuric acid (H₂SO₄) and with an applied bias of 0.467 V vs RHE.

Figure S4. EIS curves as Nyquist plots of the HYP (a) and HIE (b) samples as a function of thickness measured with an applied bias of 0.7 V vs RHE.

Figure S5. Equivalent circuit employed for the EIS data fitting (a), showing respectively the double layer at the TCO substrate/film interface (R_{sub} and C_{sub}), the "Bisquert" transmission line element (BISQ.) and the resistance of the electrolytic solution (R_{sol}). Exploded circuit for the "Bisquert" transmission line element (b), showing a repetition of the main circuital block made by the bulk transport resistance (R_{tr}) and the double layer at the nanoparticles/electrolyte interface (R_{rec} and C_{μ}).